

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE of B. Tech. Information Technology VII & VIII Semester

[Draft Syllabus Subjected to approval]

Effective for the students admitted in year 2021-22 and onwards Approved by academic council meeting held on

Teaching & Examination Scheme B. Tech. Information Technology 4rdYear – VII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title	1	Iour		Exam Hours		Mark		Credit
				L	Т	P		IA	ETE	Total	
			TH	FOI	DV						
			111	LOI							
1	DC	7IT4-01	Deep Learning	3	-	-	3	30	70	100	3
2	UE	Univer	sity Elective subject	3	-	-	3	30	70	100	3
		Course co	de and title to be selected								
		from the	e university elective pool								
			of subjects								
3		7IT 5-11	Digital Image Processing	2	-	-	3	30	70	100	2
	DE	7IT5-12	Soft Computing and								
			Evolutionary Algorithms								
		7IT5-13	Generative AI								
		Sub To	otal	8	00	00	-	90	210	300	8
			PRACTICAL &	SE	SSI	ON	AL				
4	DC	7IT4-21	Deep Learning Lab	-	-	2	-	60	40	100	1
5	UI	7IT7-30	Industrial Training	-	-	1	-	60	40	100	3
	UI	7IT7-50	B.Tech. Project - I	-	-	3	-	60	40	100	2
6	CCA	7IT8-00	SODECA / Co-Curricular	-	-	-	-	-	100	100	1
			Activity								
		Sub To	otal	00	00	06	-	180	220	400	7
		Tota	1	8	00	06	-	270	430	700	15

L = Lecture, T = Tutorial, P = Practical, IA=Internal Assessment, ETE=End TermExam, Cr=Credits

Teaching & Examination Scheme B. Tech. Computer Science & Engineering 4rdYear – VIII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	. Category	Category Course Course Title Code			Exam Hours	Marks		Credit			
				L	Т	Р		IA	ЕТЕ	Total	
			TH	EOI	RY						<u> </u>
1	UE	Course co	sity Elective subject ode and title to be selected e university elective pool of subjects	3	-	-	3	30	70	100	3
		Sub To	otal	3	00	00		30	70	100	3
			PRACTICAL	&	SES	SIC	DNAL				
10	UI	8IT7-40	Seminar	-	-	2	-	60	40	100	2
	UI	8IT7-50	B.Tech. Project - II	-	-	3	-	60	40	100	4
12	CCA	8IT8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	2
	• •	Sub To	otal	00	00	05	-	120	180	300	8
		Tota	1	03	00	05	-	150	250	400	11

L = Lecture, T = Tutorial, = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

	VII Semester	D Track
	. Information Technology	
	4-01: Deep Learning May Market 100 (14:30, ETE:70)	
	Max. Marks: 100 (IA:30, ETE:70) End Term Exams: 3 Hours	Credit: 3 3L+0T+ 0P
	End Term Exams: 5 Hours	
		e Objectives:
		a result of successfully completing this c
oriunms.	deep learning and other types of machine learning algor	5
	1 0	o explain the fundamental methods invol
	e major types of neural network architectures.	o understand various aspects of deep lear
ements a	itectures for new data problems based on their require	
cincins a		blem characteristics and analyze their pe
eme	d how Deep Learning is used to solve real-world problem	
	a now Deep Learning is used to solve real-world proble	e Outcomes:
	udents will be able to	successful completion of the course the st
	f neural networks and deep neural networks.	
	*	Able to understand the working principle
		Able to perform hyperparameter tuning.
nd worki	vork for real work problem. CO-5: Able to understar	
	1	ble of various types of neural networks.
Hours	Contents	
7	oduction of artificial neural network and deep learning,	Introduction to Neural Networks: Intr
	nology, neurons, perceptron, backpropagation, Basic	
	tion - Function approximation, applications	
8	al Networks: CNN Architecture and Operations,	
	ints of the Convolution Model, Forward and Backward	convolutional layer, Pooling layer, Varia
	etwork	propagation, Building a Deep Neural N
	aining a deep neural network, hyper-parameter tuning,	
	– Under-fitting Vs Over-fitting – Optimization,	
		Normalization
8	Train/Dev / Test sets, Bias/variance, Overfitting and	
	imization, Vanishing/exploding gradients, Gradient	-
	ution Neural Networks, RNN and Backpropagation –	
		Convolutions and Pooling
0	gradient descent, exponentially weighted averages,	- 0
8	blem of local optima. Batch norm – Parameter funing L	EXMS prop. Learning rate decay, the pro
0	blem of local optima, Batch norm – Parameter tuning	
-		process
8 9	rent Neural Networks, Adversarial NN, Spectral CNN,	process Neural Network Architectures: Recur
-	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz
-	rent Neural Networks, Adversarial NN, Spectral CNN,	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le
9	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz
-	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation.
9	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for Total	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation. sted Books:
9	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation. sted Books: Deep Learning, Ian Goodfellow Yoshua
9	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for Total Bengio Aaron Courville, MIT Press, 2017 (link	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation. sted Books: Deep Learning, Ian Goodfellow Yoshua https://www.deeplearningbook.org/)
9 40	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for Total Bengio Aaron Courville, MIT Press, 2017 (link n, N D Lewis, 2016	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation. sted Books: Deep Learning, Ian Goodfellow Yoshua https://www.deeplearningbook.org/) Deep Learning Step by Step with Pytho
9 40	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for Total Bengio Aaron Courville, MIT Press, 2017 (link n, N D Lewis, 2016 ch, Josh Patterson, Adam Gibson, O'Reilly Media, 2017	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation. sted Books: Deep Learning, Ian Goodfellow Yoshua https://www.deeplearningbook.org/) Deep Learning Step by Step with Pytho Deep Learning: A Practitioner's Approa
9 40	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for Total Bengio Aaron Courville, MIT Press, 2017 (link n, N D Lewis, 2016 ch, Josh Patterson, Adam Gibson, O'Reilly Media, 2017 Bengio Aaron Courville, MIT Press, 2017	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation. sted Books: Deep Learning, Ian Goodfellow Yoshua <u>https://www.deeplearningbook.org/</u>) Deep Learning Step by Step with Pytho Deep Learning: A Practitioner's Approa Deep Learning, Ian Goodfellow Yoshua
9 40	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for Total Bengio Aaron Courville, MIT Press, 2017 (link n, N D Lewis, 2016 ch, Josh Patterson, Adam Gibson, O'Reilly Media, 2017 Bengio Aaron Courville, MIT Press, 2017 tanding", Pearson Publication 8th Edition. 2012.	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation. sted Books: Deep Learning, Ian Goodfellow Yoshua https://www.deeplearningbook.org/) Deep Learning Step by Step with Pytho Deep Learning: A Practitioner's Approa Deep Learning, Ian Goodfellow Yoshua James Allen "Natural Language Unders
9 40	rent Neural Networks, Adversarial NN, Spectral CNN, mann Machines, Long Short-Term Memory Networks arning – Tensor Flow, Keras or MatConvNet for Total Bengio Aaron Courville, MIT Press, 2017 (link n, N D Lewis, 2016 ch, Josh Patterson, Adam Gibson, O'Reilly Media, 2017 Bengio Aaron Courville, MIT Press, 2017	process Neural Network Architectures: Recur Self-Organizing Maps, Restricted Boltz (LSTM) and Deep Reinforcement Le implementation. sted Books: Deep Learning, Ian Goodfellow Yoshua https://www.deeplearningbook.org/) Deep Learning Step by Step with Pytho Deep Learning: A Practitioner's Approa Deep Learning, Ian Goodfellow Yoshua James Allen "Natural Language Unders François Chollet "Deep Learning with I

Office: Bikaner Technical University, Bikaner

Karni Industrial Area, Pugal Road, Bikaner-334004; Website:<u>https://btu.ac.in</u>

	VII Semest B. Task, Information					
B. Tech. Information Technology 7IT5-11: Digital Image Processing						
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)				
	2L+0T+ 0P	End Term Exams: 3 Hours				
	se Objectives:					
As a re	result of successfully completing this course, students v					
•	To learn the fundamental concepts of Digital Image	Processing.				
•	To understand basic image processing operations.					
•	To understand image analysis algorithms.					
•	Expose to current applications in the field of digital	image processing				
	se Outcomes:					
-	successful completion of the course, students will be a					
	: Review the fundamental concepts of digital image pr					
CO-2:	: Analyze images in the frequency domain using vario	us transforms.				
CO-3:	: Evaluate the techniques for image enhancement, image	ge restoration, and Morphological Operatio	n.			
CO-4:	: Categorize various compression techniques.					
CO-5:	: Interpret image segmentation and representation tech	niques.				
S. No.	Contents		Hours			
1	Introduction to Image Processing: Digital Image n	representation, Sampling & Quantization,	4			
	Steps in image Processing, Image acquisition		-			
2	Image Transformation & Filtering : Intensity tra Spatial filtering, Fourier transforms and its properties		6			
3	Image Restoration: Image degradation and restorat	ion process, Noise Models, Noise Filters,	6			
	degradation function, Inverse Filtering, Homomorph	ism Filtering				
4	Image Compression: Coding redundancy, Inte	erpixel redundancy, Huffman Coding,	6			
	Arithmetic coding, Lossy compression techniques, J					
5	Image Segmentation & Representation: Point, Lin	6	6			
	and Boundary linking, Region Based Segmentati	on, Boundary representation, Boundary				
	Descriptors					
	Total		28			
	ested Books:					
Sugges						
00	nzalez C. R., Woods E. R., Digital Image Processing, I	Pearson Education (2008) 3rd ed.				

3. Sonka M., Hlavac V. and Boyle R., Image Processing, Analysis and Machine Vision, Thomson Learning, (1993)1st ed.

- 4. McAndrew A., Introduction to Digital Image Processing with Matlab, Thomson Course Technology (2004)
- 5. Low A., Introductory Computer Vision and Image Processing, McGraw-Hill (1991), 1st ed.

6. Boyle and Thomas: Computer Vision - A First Gurse 2nd Edition, ISBN 0-632-028-67X, Blackwell Science 1995.

7. Pakhera Malay K: Digital Image Processing and Pattern Recogination, PHI.

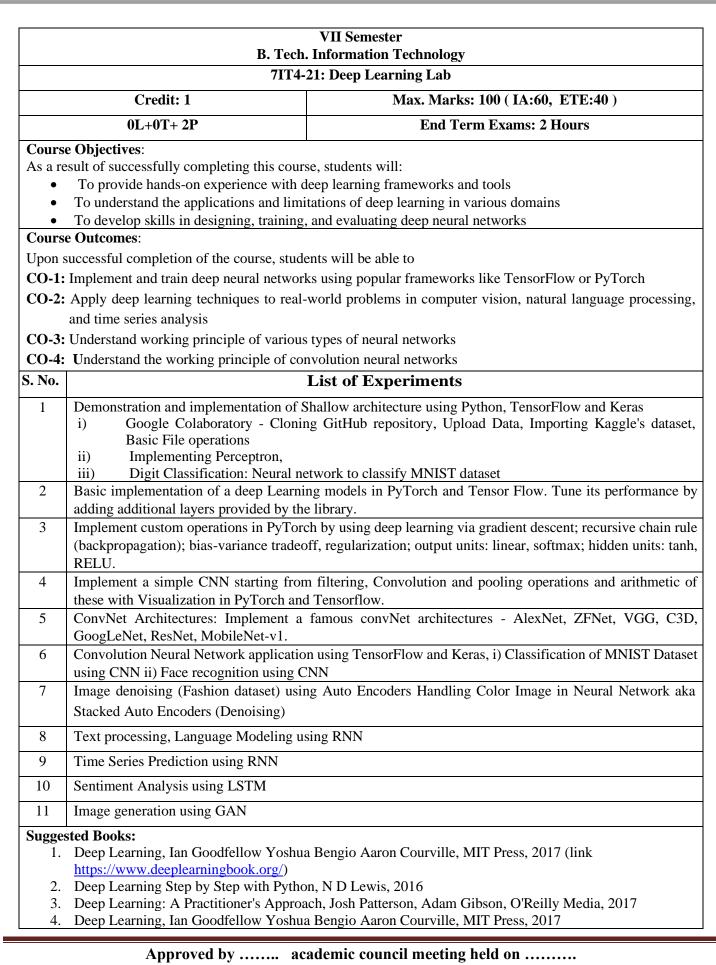
	ייתית	VII Semester	
		Information Technology	
	-	uting and Evolutionary Algorithms	
Credit: 2 Max. Marks: 100 (IA:30, ETE:70)			
	2L+0T+ 0P	End Term Exams: 3 Hours	
	e Objectives:		
As a re	esult of successfully completing this cours	se, students will:	
•	Able to understand basics of Fuzzy Set		
•	Able to understand the concepts of the g	6	
Cours	Able to understand the idea of the evolue e Outcomes :		
		ante will be able to	
-	successful completion of the course, stude		
CO-I:		oncept of fuzziness involved in various systems and fu	izzy se
00.0	theory.		• ,
0-2:	· · ·	s, knowledge representation using fuzzy rules, appro	oximate
~~	reasoning, fuzzy inference systems, and		
CO-3:		other random search procedures useful while seeking	g globa
	optimum in self learning situations.		
C O-4 :		research problems and research methods in Soft Cor	nputin
	Techniques		
5. No.		Contents	Hour
1	Introduction to Soft Computing: A	ims of Soft Computing-Foundations of Fuzzy Sets	5
		of Fuzzy Sets- Elements of Fuzzy Mathematics-Fuzzy	
	Relations-Fuzzy Logic		
2		ons of Fuzzy Sets-Fuzzy Modeling – Fuzzy Decision	6
	•	fication-Fuzzy Control Systems-Fuzzy Information	
3	Processing- Fuzzy Robotics.	Constin Algorithm Doced Optimization Dringinla of	6
3	<u> </u>	Genetic Algorithm Based Optimization-Principle of with Directed Mutation- Comparison of Conventional	0
	e	of GA in practical implementation. Introduction to	
	-	tors-GA and PSO in engineering applications	
4		ral Networks and their learning-Architecture of Neuro-	6
		Rules and membership functions - Fuzzification and	-
		ns- Neuro-Fuzzy Identification - Neuro Fuzzy Control-	
	Combination of Genetic Algorithm	with Neural Networks- Combination of Genetic	
		zzy and Genetic Approach in engineering applications.	
5		Simple Evolutionary System, Evolutionary Systems as	5
	-	ve, Canonical Evolutionary Algorithms - Evolutionary	
		Unified View of Simple EAs- A Common Framework,	
	Population Size		20
		Total	28
Sugge	sted Books:		
1.	An Introduction to Genetic Algorithm M		11 1
2.	Evolutionary Algorithm for Solving Mu Lament, Veldhnizer (Springer)	ulti-objective, Optimization Problems (2nd Edition), Co	ilelo,
	LADEU VERHUZEL NOTIVEL		

3. Fuzzy Logic with Engineering Applications Timothy J. Ross (Wiley)

Approved by academic council meeting held on Office: Bikaner Technical University, Bikaner

Karni Industrial Area, Pugal Road, Bikaner-334004; Website:<u>https://btu.ac.in</u>

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेरतकनीकीविश्वविद्यालय,बीकानेर OFFICE OF THE DEAN ACADEMICS


- 4. Sivanandam, Deepa, "Principles of Soft Computing", Wiley
- 5. Jang J.S.R, Sun C.T. and Mizutani E, "Neuro-Fuzzy and Soft computing", Prentice Hall
- 6. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill

		VII Semester		
		nformation Technology -13: Generative AI		
	Credit: 2 Max. Marks: 100 (IA:30, ETE:70)			
	2L+0T+ 0P	End Term Exams: 3 Hours		
	e Objectives: esult of successfully completing this cours	e students will be:		
Asale		ative AI and its applications in computer vision and	natural	
•	language processing.	arve Ar and its applications in computer vision and	naturai	
•		enting generative models using deep learning framewor	rks.	
٠		of generative models in various applications.		
Course	e Outcomes:			
Upon s	successful completion of the course, stude	ents will be able to		
CO-1:	Design and implement generative models	s for image and text generation, and other applications.		
		of various generative models and be able to select app	ropriate	
	models for specific tasks.		I	
CO-3:	*	nerative AI and be able to apply them to real-world pro	blems.	
		nerative models and develop strategies for improvement		
<u>5. No.</u>	entitedity evaluate the performance of ge	Contents	Hours	
1	Introduction: Objective, scope and out		1	
2		of Generative Models (VAE, GAN, RNN, etc.),	6	
2	Applications of Generative AI (Image G		U	
3		ision : Convolutional Neural Networks (CNNs) for	7	
5	-	al Networks (GANs) for image generation, Variational	,	
		ession and generation, Case studies: Image generation,		
	Image-to-image translation, etc.			
4		age Processing: Recurrent Neural Networks (RNNs)	7	
	for text processing, Transformers for	text generation and language modeling, Generative		
	models for text summarization, chatbots	, and language translation		
5	Advanced Generative AI Topics: Ge	enerative models for multimodal data (images, text,	7	
		equential data (time series, videos, etc.), Advanced		
	techniques: Style transfer, CycleGAN			
		Total	28	
Sugges	sted Books:			
1.	· · · ·	achines to Paint, Write, Compose, and Play by David F	oster,	
	O'Reilly Media			
2.	Deep Learning by Ian Goodfellow, Yosh			
3.	-	n Goodfellow, Yoshua Bengio, and Aaron Courville		
4	Natural Language Processing (almost) f	rom Scratch" by Collobert et al		
4. 5.	Natural Language Processing (almost) fi Neural Network Methods for Natural La	•		

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेरतकनीकीविश्वविद्यालय,बीकानेर **OFFICE OF THE DEAN ACADEMICS**

James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012. 5. 6. François Chollet "Deep Learning with Python," First Edition, Manning Publication, 2018 Neural Networks and Deep Learning, Michael Nielsen, Determination Press (2015) (link: http://neuralnetworksanddeeplearning.com/)

		VII Semester		
		B. Tech. Information Technolog	<u>sy</u>	
		7IT7-50 : B.Tech. Project – I		
Credit:	2	М	ax. Marks: 100 ((IA:60, ETE:40)
0L+0T+	-3P	Mode of eva	aluation: Report	and presentation
		Assessment or Evaluati	on	
	The ev	aluation criteria for B. Tech.	•	1
S. No.		Category	Internal Assessment	End Term Examinations
			Max Marks in %	Max Marks in %
1	Project Motivat			
		utility in actual life application	10%	10%
2	Project Ideation, Project Formulation, and Design		10%	10%
3	· · · ·	& Finalization, Project Planning		
		Viability for 2 semesters)	10%	10%
4	Technology Used an		10%	10%
5	Demonstration an	, Development, Deployment, d Delivery (Working and ired to justify current semester on	30%	30%
6	Report writing (organization of figure/diagram, writ		20%	20%
7		(teamwork, punctuality, novelty,		
	etc.)		10%	10%
]	Fotal	100%	100%

	VIII Semester B. Tech. Information Technolog	TX 7	
	8IT7-50 : B.Tech. Project -II	3 y	
Credit:	4 M	ax. Marks: 100	(IA:60, ETE:40)
0L+0T+	-3P Mode of ev	aluation: Report	and presentation
	Assessment or Evaluati	on	
	The evaluation criteria for B. Tech.	•	
S. No.	Category	Internal Assessment	End Term Examinations
		Max Marks in %	Max Marks in %
1	Project Motivation, Conceptual Design, Innovativeness, and utility in actual life application	10%	10%
2	Project Ideation, Project Formulation, and Design	10%	10%
3	Technology Used and Method	10%	10%
4	Project Execution, Development, Deployment, Demonstration and Delivery (Working and completeness) required to justify current semester work and presentation	30%	30%
5	Report writing and project documentation (organization of the report, clarity, use of figure/diagram, writing skills, presentation of result, paper publication, patent application, etc.)	20%	20%
6	Professional ethics (teamwork, punctuality, novelty, etc.)	10%	10%
7	Paper Published in reputed journals (SCE, SCIE, Scopus, UGC care or any peer-reviewed journal), Paper publications (International or National conferences [IEEE, ACM, Springer, etc]), and presentations at Hackathon (Institute level or SIH) or any institute, state or national level project presentation competitions.	10%	10%
	Total	10%	10%