

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE of B. Tech. (Computer Science & Engineering (Data Science)) VII & VIII Semester

[Draft Syllabus Subjected to approval]

Effective for the students admitted in year 2021-22 and onwards Approved by academic council meeting held on

Teaching & Examination Scheme B. Tech. (Computer Science & Engineering (Data Science)) 4rdYear – VII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title	I	Iour	'S	Exam Hours				Credit
				L	Т	Р		IA	ETE	Total	
	<u> </u>		TH	EOI	RY		11				
1	DC	7CD4-01	Statistical Modeling and Forecasting	3	-	-	3	30	70	100	3
2	UE	Course co	sity Elective subject ode and title to be selected e university elective pool of subjects	3	-	-	3	30	70	100	3
3	DE	7CD5-11 7CD5-12 7CD5-13	Mobile Computing Soft Computing and Evolutionary Algorithms Generative AI	2	-	-	3	30	70	100	2
		Sub To	otal	8	00	00	-	90	210	300	8
			PRACTICAL &	SE	SSI	ON.	AL				
4	DC	7CD4-21	Statistical Modeling and Forecasting Lab	-	-	2	-	60	40	100	1
5	UI	7CD7-30	Industrial Training	-	-	1	-	60	40	100	3
	UI	7CD7-50	B.Tech. Project - I	-	-	3	-	60	40	100	2
6	CCA	7CD8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	1
		Sub To	otal	00	00	06	-	180	220	400	7
		Tota	1	8	00	06	-	270	430	700	15

L = Lecture, T = Tutorial, P = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

Teaching & Examination Scheme B. Tech. (Computer Science & Engineering (Data Science)) 4rdYear – VIII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title	I	Iour	S	Exam Hours			Credit	
				L	Т	Р		IA	ETE	Total	
			TH	EO	RY	1					
1	UE	Course co	sity Elective subject de and title to be selected university elective pool of subjects	3	-	-	3	30	70	100	3
		Sub To	otal	3	00	00		30	70	100	3
			PRACTICAL	&	SES	SIC	DNAL				
10	UI	8CD7-40	Seminar	-	-	2	-	60	40	100	2
	UI	8CD7-50	B.Tech. Project - II	-	-	3	-	60	40	100	4
12	CCA	8CD8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	2
	•	Sub To	otal	00	00	05	-	120	180	300	8
		Tota	1	03	00	05	-	150	250	400	11

L = Lecture, T = Tutorial, = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

	VII Semester B. Tech. (Computer Science & Engineering (Data Science))	
	7CD4-01: Statistical Modeling and Forecasting	
Credit	: 3 Max. Marks: 100 (IA:30, E'	TE:70)
3L+01		
	e Objectives:	
	esult of successfully completing this course, students will :	
•	Able to understand basic property of time-series data.	
•	Able to handle seasonality and trend in time series data.	
٠	Able to use and deploy various models for time series data.	
•	Able to select best model for time series data.	
	e Outcomes:	
-	successful completion of the course, students will be able to	
	Discuss the challenges and their solutions for Time Series Data.	
	Understanding impact of seasonality in time series data.	
	Understand role of drift and trend.	
	Understand to working of various models used for time series data.	
S. No.	Contents	Hours
1	Basic Properties of time-series data: Distribution and moments, Stationarity,	7
	Autocorrelation, Heteroscedasticity, Normality	
	Introduction of Time Series Analysis: Introduction to Time Series and Forecasting, Different	
	types of data, Internal structures of time series. Models for time series analysis, Examples of	
	Time series Nature and uses of forecasting, Forecasting Process, Data for forecasting,	
	Resources for forecasting.	
2	Statistics Background for Forecasting: Graphical Displays, Time Series Plots, Plotting	
	Smoothed Data, Numerical Description of Time Series Data, Use of Data Transformations and	7
	Adjustments, General Approach to Time Series Modelling and Forecasting, Evaluating and	
	Monitoring Forecasting Model Performance.	
	Random walk model: Non-stationarity and unit-root process, Drift and Trend models	
3	Introduction to Autoregressive models and forecasting: Autocorrelation and Partial	10
	autocorrelation, Autoregressive Moving Average (ARMA) Models , Autoregressive	
	Integrated Moving Average (ARIMA) Models, Forecasting using ARIMA, Seasonal Data,	
	Seasonal ARIMA Models Forecasting using Seasonal ARIMA Models	
	Introduction to Vector Auto-regressive (VAR) models: Impulse Response Function (IRF),	
	Error Correction Models, Co-integration, Vector ARIMA Models, Vector AR (VAR) Model	
	Model Selection Criteria: Finding the "BEST" Model, Impulse Response Function to Study	
	the Differences in Models Comparing Impulse Response Functions for Competing Models .	
4	Time Series Regression Model: Introduction Least Squares Estimation in Linear Regression	
	Models, Statistical Inference in Linear Regression, Prediction of New Observations, Model	8
	Adequacy Checking, Variable Selection Methods in Regression, Generalized and Weighted	U
	Least Squares, Regression Models for General Time Series Data, Exponential Smoothing, First	
	order and Second order.	
5	Multivariate Time Series Models and Forecasting: Multivariate Time Series Models	
	and Forecasting, Multivariate Stationary Process	10
	Panel data models: Fixed-Effect and Random-Effect models	10

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेरतकनीकीविश्वविद्यालय,बीकानेर OFFICE OF THE DEAN ACADEMICS

Introduction to Neural Networks and Forecasting Spectral Analysis, Bayesian Methods in	
Forecasting, Principal Component Analysis (PCA) and Factor Analysis	
Total	42

Suggested Books:

- 1. Introduction To Time Series Analysis And Forecasting, 2nd Edition, Wiley Series In Probability And Statistics, By Douglas C. Montgomery, Cheryl L. Jen(2015)
- 2. Master Time Series Data Processing, Visualization, And Modeling Using Python Dr. Avishek Pal Dr. Pks Prakash (2017)
- 3. Chris Brooks "Introductory Econometrics for Finance," Fourth Edition, Cambridge University Press 2019
- 4. Ruey S. Tsay "Analysis of Time-series data," Third Edition, Wiley 2014
- 5. John Fox and Sanford Weisberg "An R Companion to Applied Regression," Third Edition, SAGE 2018
- 6. Yves Croissant and Giovanni Millo "Panel Data Econometrics with R," First Edition, Wiley 2018

	VII Semester B. Tech. (Computer Science & Engineering (Data Scien	nce))	
	7CD5-11: Mobile Computing		
	Credit: 2 Max. Marks: 100 (IA:30, ETE:70)	
	2L+0T+ 0P End Term Exar	ns: 3 Hours	
	se Objectives:		
	result of successfully completing this course, students will:	·/ 1 1· /·	
• To m limitati	make the student understand the concept of the mobile computing paradign	n, its novel application	ons, and
	understand the typical mobile networking infrastructure through a popular G	SM protocol	
	lerstand the issues and solutions of various layers of mobile networks, namely		k Laye
	ansport Layer		2
	understand the database issues in mobile environments & data delivery mode	els.	
	derstand the ad hoc networks and related concepts.		
	understand the platforms and protocols used in the mobile environment.		
	se Outcomes:		
-	successful completion of the course, students will be able to		
	Think and develop a new mobile application.		
	2: Take any new technical issue related to this new paradigm and come up wi	th a solution(s).	
	: Develop new ad hoc network applications and/or algorithms/protocols.		
	: Understand & develop any existing or new protocol related to the mobile e	nvironment	
. No.	Contents		Hour
1 Introduction: Mobile Communications, Mobile Computing – Paradigm, Promises/Novel			
	Applications and Impediments and Architecture; Mobile and Handheld D		
	of Mobile and Handheld Devices. GSM – Services, System Architecture		
2	Protocols, Localization, Calling, Handover, Security, New Data Services,		6
Z	(Wireless) Medium Access Control (MAC): Motivation for a specialized exposed terminals, Near and far terminals), SDMA, FDMA, TDMA,		0
	LAN/(IEEE 802.11)	, CDIVIA, WHEless	
3	Mobile Network Layer: IP and Mobile IP Network Layers, Packet Deli	ivery and Handover	6
5	Management, Location Management, Registration, Tunneling and Er	•	v
	Optimization, DHCP	ieupsuluion, moute	
4	Mobile Transport Layer: Conventional TCP/IP Protocols, Indirect TC	CP, Snooping TCP,	6
	Mobile TCP, Other Transport Layer Protocols for Mobile Networks	, U	
	Database Hoarding & Caching Techniques, Client-Server Computi	ng & Adaptation,	
	Transactional Models, Query processing		
5	Data Dissemination and Synchronization: Communications Asymmetry	-	5
	Data Delivery Mechanisms, Data Dissemination, Broadcast Models, Se	U	
	Indexing Methods, Data Synchronization – Introduction, Software, and Pr	otocols.	
	Total		28
00	ested Books:		
	hen Schiller, "Mobile Communications", Addison-Wesley, Second Edition, 2009.		
	Kamal, "Mobile Computing", Oxford University Press, 2007, ISBN: 0195686772 OKE K TALUKDER, HASAN AHMED, ROOPA R YAVAGAL, "Mobile Comput	ing Technology Appli	rations
	ervice Creation" Second Edition, Mc Graw Hill.	ing, reemology Appli	can0113
4. UWE	/E Hansmann, Lother Merk, Martin S. Nicklaus, Thomas Stober, "Principles of Mob	oile Computing," Secon	d
	n, Springer.		
	ENESIS : Personal Communication Device". GENESIS 191A321 Document, 1993. telligent Vehicle Highway Systems Projects". Department of Transportation, Minnes		1004
). inte	tempent ventere righway systems projects. Department of fransportation, Minnes	sola Document, March	1774.

Approved by academic council meeting held on Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004; Website:<u>https://btu.ac.in</u>

		VII Semester	
	` -	ence & Engineering (Data Science)) Iting and Evolutionary Algorithms	
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)	
	2L+0T+ 0P	End Term Exams: 3 Hours	
	e Objectives:		
•	Able to understand the concepts of the evolution Able to understand the concepts of the generation of the second the evolution Able to understand the idea of the evolution	enetic algorithms.	
	e Outcomes:		
-	successful completion of the course, studen		
CO-2:	Understand the concepts of fuzzy sets, knowled inference systems, and fuzzy logic Describe with genetic algorithms and other ran	of fuzziness involved in various systems and fuzzy set theor edge representation using fuzzy rules, approximate reasonin ndom search procedures useful while seeking global optimu	ıg, fuzzy
GO 4	learning situations.		
	Develop some familiarity with current researce	h problems and research methods in Soft Computing Techn	
S. No.		Contents	Hours
1		ns of Soft Computing-Foundations of Fuzzy Sets f Fuzzy Sets- Elements of Fuzzy Mathematics-Fuzzy	5
2	Application of Fuzzy Sets: Application	as of Fuzzy Sets-Fuzzy Modeling – Fuzzy Decision cation-Fuzzy Control Systems-Fuzzy Information	6
3	Genetic Algorithm- Genetic Algorithm w and Genetic Search Algorithms Issues of	Genetic Algorithm Based Optimization-Principle of with Directed Mutation- Comparison of Conventional of GA in practical implementation. Introduction to prs-GA and PSO in engineering applications	6
4	Neuro-Fuzzy Technology: Fuzzy Neura Fuzzy Systems- Generation of Fuzzy R Defuzzyfication in Neuro-Fuzzy Systems Combination of Genetic Algorithm v	I Networks and their learning-Architecture of Neuro- ules and membership functions - Fuzzification and - Neuro-Fuzzy Identification - Neuro Fuzzy Control- with Neural Networks- Combination of Genetic zy and Genetic Approach in engineering applications.	6
5	Basic Evolutionary Processes, EV: A Sir Problem Solvers, A Historical Perspective	imple Evolutionary System, Evolutionary Systems as e, Canonical Evolutionary Algorithms - Evolutionary nified View of Simple EAs- A Common Framework,	5
	,	Total	28
Sugges 1. 2. 3. 4. 5. 6.	sted Books: An Introduction to Genetic Algorithm Melan Evolutionary Algorithm for Solving Multi-ob Veldhnizer (Springer) Fuzzy Logic with Engineering Applications T Sivanandam, Deepa, "Principles of Soft Con Jang J.S.R, Sun C.T. and Mizutani E, "Neuro Timothy J. Ross, "Fuzzy Logic with Engineer	ojective, Optimization Problems (2nd Edition), Collelo, Lan Fimothy J. Ross (Wiley) nputing", Wiley -Fuzzy and Soft computing", Prentice Hall	nent,

		VII Semester	
		cience & Engineering (Data Science)) 5-13: Generative AI	
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)	
	2L+0T+ 0P	End Term Exams: 3 Hours	
	language processing. Develop skills in designing and implem	se, students will be: rative AI and its applications in computer vision and menting generative models using deep learning framewor of generative models in various applications.	
Cours	e Outcomes:		
-	successful completion of the course, stude		
		s for image and text generation, and other applications.	
CO-2:	_	of various generative models and be able to select app	ropriate
	models for specific tasks.		
		nerative AI and be able to apply them to real-world pro	
	Critically evaluate the performance of ge	enerative models and develop strategies for improvement	
S. No.		Contents	Hours
1	Introduction: Objective, scope and out	come of the course	1
2	Overview of Generative AI : Types Applications of Generative AI (Image C	of Generative Models (VAE, GAN, RNN, etc.), Generation, Text Generation, etc.)	6
3	image processing, Generative Adversari	ision : Convolutional Neural Networks (CNNs) for al Networks (GANs) for image generation, Variational ession and generation, Case studies: Image generation,	7
4	Generative Models for Natural Langu	uage Processing: Recurrent Neural Networks (RNNs) text generation and language modeling, Generative s, and language translation	7
5	Advanced Generative AI Topics: Ge	enerative models for multimodal data (images, text, equential data (time series, videos, etc.), Advanced	7
	· · · · ·	Total	28
Sugge	sted Books:		
1.		lachines to Paint, Write, Compose, and Play by David F	⁷ oster,
2.	Deep Learning by Ian Goodfellow, Yos		
3.	-	n Goodfellow, Yoshua Bengio, and Aaron Courville	
4.	Natural Language Processing (almost) f	-	
5.	Neural Network Methods for Natural La		
6.	Deep Learning for Computer Vision with	th Python" by Adrian Rosebrock	

		I Semester ace & Engineering (Data Science))
	7CD4-21: Statistical M	Andeling and Forecasting Lab
Credit	::1	Max. Marks: 100 (IA:60, ETE:40)
0L+0T	T+ 2P	End Term Exams: 2 Hours
Course	e Objectives:	
	esult of successfully completing this course, s	students will :
•	Able to understand basic property of time-s	series data.
•	Able to handle seasonality and trend in tim	e series data.
٠	Able to use and deploy various models for	
٠	Able to select best model for time series da	ta.
	e Outcomes:	
-	successful completion of the course, students	
	Discuss the challenges and their solutions for	
CO-2:	Understanding impact of seasonality in time	e series data.
CO-3:	Understand role of drift and trend.	
CO-4 :	Understand to working of various models u	sed for time series data.
S. No.	List	of Experiments
1	Cleaning, Preprocessing and Handling	Time Series Data
	Time Series Data Cleaning	
	• Loading and Handling Times se	ries data
	Preprocessing Techniques	
2		ne Series and making Time Series data Stationary
_	Estimating & Eliminating Trend.	ie Series and making Thie Series and Statisticity
	Aggregation	
	• Smoothing	
	Polynomial Fitting	
	Eliminating Trend and Seasonality	
	• Differencing	
	Decomposition	
3	Time Series analysis	
	a) Moving Average time analysis of	lata.
	b) Smoothing the Time analysis Da	
	Check out the Time series Linear and n	on-linear trends.
4	Time Series Modelling and Forecasting	g
	• Moving average	5
	• Exponential smoothing	
	• ARIMA	
	Seasonal autoregressive integrated mov	ing average model (SARIMA)
5	Dependence Techniques	
	Multivariate Analysis of Varian	ce and Covariance
	Canonical Correlation Analysis	
	• Structural Equation Modeling	
	Inter-Dependence Techniques	
	Factor Analysis	
	- i detor i marybib	

Suggested Books:

- 1. Introduction To Time Series Analysis And Forecasting, 2nd Edition, Wiley Series In Probability And Statistics, By Douglas C. Montgomery, Cheryl L. Jen(2015)
- 2. Master Time Series Data Processing, Visualization, And Modeling Using Python Dr. Avishek Pal Dr. Pks Prakash (2017)
- 3. Chris Brooks "Introductory Econometrics for Finance," Fourth Edition, Cambridge University Press 2019
- 4. Ruey S. Tsay "Analysis of Time-series data," Third Edition, Wiley 2014
- 5. John Fox and Sanford Weisberg "An R Companion to Applied Regression," Third Edition, SAGE 2018
- 6. Yves Croissant and Giovanni Millo "Panel Data Econometrics with R," First Edition, Wiley 2018

	B. Tech. ()	VII Semester Computer Science & Engine	ering (Data Science))	
		7CD7-50 : B.Tech. Proj			
Credit:	2		M	ax. Marks: 100 ((IA:60, ETE:40)
0L+0T+	+3P	Mod	e of eva	luation: Report	and presentation
		Assessment or Eva	luati	on	
	The ev	aluation criteria for B. '	Tech.	Project - I	
S. No.		Category		IA marks bifurcation	ETE marks bifurcation
				Max Marks in %	Max Marks in %
1	Project Motivat Innovativeness, and	ion, Conceptual De utility in actual life applica	esign, ation	10%	10%
2		pject Formulation, and Desi		10%	10%
3	5 51 0	& Finalization, Project Plan Viability for 2 semesters)	nning	10%	10%
4	Technology Used an	nd Method		10%	10%
5	Demonstration an	ired to justify current sem	and	30%	30%
6	figure/diagram, writ	and project document the report, clarity, use ing skills, presentation of r atent application, etc.)	e of	20%	20%
7		teamwork, punctuality, no	velty,	10%	10%
		otal		100%	100%

	VIII Semester B. Tech. (Computer Science & Engineering (Data Sajanga))				
	8CD7-50 : B.Tech. Project -II	Data Science))				
Credit:	Credit: 4 Max. Marks: 100 (IA:60, ETE:40)					
0L+0T+	-3P Mode of eva	aluation: Report	and presentation			
	Assessment or Evaluati	on				
	The evaluation criteria for B. Tech.	Project - II				
S. No.	Category	IA marks bifurcation	ETE marks bifurcation			
		Max Marks in %	Max Marks in %			
1	Project Motivation, Conceptual Design, Innovativeness, and utility in actual life application	10%	10%			
2	Project Ideation, Project Formulation, and Design	10%	10%			
3	Technology Used and Method	10%	10%			
4	Project Execution, Development, Deployment, Demonstration and Delivery (Working and completeness) required to justify current semester work and presentation	30%	30%			
5	Report writing and project documentation (organization of the report, clarity, use of figure/diagram, writing skills, presentation of result, paper publication, patent application, etc.)	20%	20%			
6	Professional ethics (teamwork, punctuality, novelty, etc.)	10%	10%			
7	Paper Published in reputed journals (SCE, SCIE, Scopus, UGC care or any peer-reviewed journal), Paper publications (International or National conferences [IEEE, ACM, Springer, etc]), and presentations at Hackathon (Institute level or SIH) or any institute, state or national level project presentation competitions.	10%	10%			
	Total	100%	100%			