

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE of B. Tech. (Computer Science and Engineering) VII & VIII Semester

[Draft Syllabus Subjected to approval]

Effective for the students admitted in year 2021-22 and onwards Approved by academic council meeting held on

Teaching & Examination Scheme B. Tech. (Computer Science and Engineering) 4rdYear – VII Semester

(*Effective for the students admitted in year 2021-22 and onward*)

S. No.	Category	Course Code	Course Title		Hours Exam Marks Hours			Credit			
				L	Т	P		IA	ETE	Total	
			TH	EOI	RY						
1	DC	7CS4-01	Deep Learning	3	-	-	3	30	70	100	3
2	UE University Elective subject Course code and title to be selected from the university elective pool of subjects		3	-	-	3	30	70	100	3	
3	DE	7CS 5-11 7CS5-12 7CS5-13	Mobile Computing Soft Computing and Evolutionary Algorithms Generative AI	2	-	-	3	30	70	100	2
		Sub To	otal	8	00	00	-	90	210	300	8
			PRACTICAL &	SE	SSI	ON	AL				
4	DC	7CS4-21	Deep Learning Lab	-	-	2	-	60	40	100	1
5	UI	7CS7-30	Industrial Training	-	-	1	-	60	40	100	3
	UI	7CS7-50	B.Tech. Project - I	-	-	3	-	60	40	100	2
6	CCA	7CS8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	1
		Sub To	otal	00	00	06	-	180	220	400	7
		Tota	1	8	00	06	-	270	430	700	15

L = Lecture, T = Tutorial, P = Practical, IA=Internal Assessment, ETE=End TermExam, Cr=Credits

Teaching & Examination Scheme B. Tech. (Computer Science and Engineering) 4rdYear – VIII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title	I	Iour	S	Exam Hours			S	Credit
				L	Т	Р		IA	ETE	Total	
			TH	EOI	RY						
1	UE	Course co	sity Elective subject de and title to be selected university elective pool of subjects	3	_	_	3	30	70	100	3
		Sub To	otal	3	00	00		30	70	100	3
			PRACTICAL	&	SES	SIC	DNAL				
10	UI	8CS7-40	Seminar	-	-	2	-	60	40	100	2
	UI	8CS7-50	B.Tech. Project - II	-	-	3	-	60	40	100	4
12	CCA	8CS8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	2
	· ·	Sub To	otal	00	00	05	-	120	180	300	8
		Tota	1	03	00	05	-	150	250	400	11

L = Lecture, T = Tutorial, = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

	VII Semester	
	B. Tech. (Computer Science and Engineering)	
	7CS4-01: Deep Learning	
	Credit: 3 Max. Marks: 100 (IA:30, ETE:70)	
	3L+0T+ 0P End Term Exams: 3 Hours	
	e Objectives:	
	a result of successfully completing this course, students will be able :	
	o describe the major differences between deep learning and other types of machine learning algo	rithms.
	To explain the fundamental methods involved in deep learning.	
	To understand various aspects of deep learning and its building block.	
	To understand and differentiate between the major types of neural network architectures.	
	To Select or design neural network architectures for new data problems based on their require	ements ar
	oblem characteristics and analyze their performance. To understand basic working principles and how Deep Learning is used to solve real-world proble	m
	e Outcomes:	51115
	successful completion of the course the students will be able to	
	Able to learn the fundamental concepts of neural networks and deep neural networks.	
	Able to understand the working principle of convolution neural networks.	
	Able to perform hyperparameter tuning.	
	Able to analyze and design neural network for real work problem. CO-5: Able to understa	nd workir
	ble of various types of neural networks.	
. No.	Contents	Hours
1	Introduction to Neural Networks Introduction of artificial neural network and deep learning,	7
	characteristics of neural networks terminology, neurons, perceptron, backpropagation, Basic	
	learning laws, Activation and Loss function - Function approximation, applications	
2	Introduction to Convolution Neural Networks CNN Architecture and Operations,	8
	convolutional layer, Pooling layer, Variants of the Convolution Model, Forward and Backward	
	propagation, Building a Deep Neural Network	
	Improving Deep Neural Networks Training a deep neural network, hyper-parameter tuning,	
	Hidden layers, Generalization Gap – Under-fitting Vs Over-fitting – Optimization,	
2	Normalization	0
3	Practical aspects of Deep Learning: Train/Dev / Test sets, Bias/variance, Overfitting and	8
	regularization, Linear models and optimization, Vanishing/exploding gradients, Gradient	
	checking – Logistic Regression, Convolution Neural Networks, RNN and Backpropagation – Convolutions and Pooling	
4	Optimization algorithms: Mini-batch gradient descent, exponentially weighted averages,	8
7	RMS prop, Learning rate decay, the problem of local optima, Batch norm – Parameter tuning	0
	process	
5	Neural Network Architectures: Recurrent Neural Networks, Adversarial NN, Spectral CNN,	9
	Self-Organizing Maps, Restricted Boltzmann Machines, Long Short-Term Memory Networks	- '
	(LSTM) and Deep Reinforcement Learning - Tensor Flow, Keras or MatConvNet for	
	implementation.	
	Total	40
٩٢	sted Books:	
sugge		
Sugge 1.		
1.	https://www.deeplearningbook.org/)	
1. 2.	Deep Learning Step by Step with Python, N D Lewis, 2016	_
1. 2. 3.	Deep Learning Step by Step with Python, N D Lewis, 2016 Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017	7
1. 2. 3. 4.	Deep Learning Step by Step with Python, N D Lewis, 2016 Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017 Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017	7
1. 2. 3. 4. 5.	Deep Learning Step by Step with Python, N D Lewis, 2016 Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017 Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017 James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.	7
1. 2. 3. 4. 5. 6.	Deep Learning Step by Step with Python, N D Lewis, 2016 Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017 Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017 James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012. François Chollet "Deep Learning with Python," First Edition, Manning Publication,2018	7
1. 2. 3. 4. 5.	Deep Learning Step by Step with Python, N D Lewis, 2016 Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017 Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017 James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.	7

Office: Bikaner Technical University, Bikaner

Karni Industrial Area, Pugal Road, Bikaner-334004; Website:<u>https://btu.ac.in</u>

		VII Semester	
	· · · · · · · · · · · · · · · · · · ·	iter Science and Engineering) : Mobile Computing	
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)	
	2L+0T+ 0P	End Term Exams: 3 Hours	
	e Objectives:		
 To milimitation To u Under 	ions. nderstand the typical mobile networking in rstand the issues and solutions of various l	e, students will: f the mobile computing paradigm, its novel application nfrastructure through a popular GSM protocol ayers of mobile networks, namely MAC layer, Networ	
• To u	nsport Layer nderstand the database issues in mobile en erstand the ad hoc networks and related co	•	
	nderstand the platforms and protocols used		
	e Outcomes:		
Upon s	successful completion of the course, studen	nts will be able to	
CO-1 :	Think and develop a new mobile applicate	ion.	
CO-2 :	Take any new technical issue related to th	is new paradigm and come up with a solution(s).	
CO-3 :	Develop new ad hoc network applications	s and/or algorithms/protocols.	
CO-4 :	Understand & develop any existing or new	w protocol related to the mobile environment	
S. No.		Contents	Hours
1	Applications and Impediments and Arch	s, Mobile Computing – Paradigm, Promises/Novel hitecture; Mobile and Handheld Devices, Limitations I – Services, System Architecture, Radio Interfaces, ver, Security, New Data Services, GPRS	5
2		AC): Motivation for a specialized MAC (Hidden and inals), SDMA, FDMA, TDMA, CDMA, Wireless	6
3	Mobile Network Layer: IP and Mobile	e IP Network Layers, Packet Delivery and Handover Registration, Tunneling and Encapsulation, Route	6
4	Mobile Transport Layer: Conventional Mobile TCP, Other Transport Layer Proto	al TCP/IP Protocols, Indirect TCP, Snooping TCP, pocols for Mobile Networks. Database Issues: Database ent-Server Computing & Adaptation, Transactional	6
5	Data Dissemination and Synchronizat Data Delivery Mechanisms, Data Disse	tion: Communications Asymmetry, Classification of emination, Broadcast Models, Selective Tuning and n – Introduction, Software, and Protocols.	5
		Total	28
 Joch Raj ASC Applic 	ations and Service Creation" Second Editi	versity Press, 2007, ISBN: 0195686772 ROOPA R YAVAGAL, "Mobile Computing, Technol	

Second Edition, Springer.

Approved by academic council meeting held on Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004; Website:<u>https://btu.ac.in</u>

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेरतकनीकीविश्वविद्यालय,बीकानेर OFFICE OF THE DEAN ACADEMICS

5. "GENESIS : Personal Communication Device". GENESIS 191A321 Document, 1993.6. "Intelligent Vehicle Highway Systems Projects". Department of Transportation, Minnesota Document, March 1994.

	VII Semester	
	B. Tech. (Computer Science and Engineering)	
	7CS5-12: Soft Computing and Evolutionary Algorithms	
	Credit: 2 Max. Marks: 100 (IA:30, ETE:70)	
	2L+0T+ 0P End Term Exams: 3 Hours	
Cours	e Objectives:	
As a re	esult of successfully completing this course, students will:	
•	Able to understand basics of Fuzzy Set	
•	Able to understand the concepts of the genetic algorithms.	
Course	Able to understand the idea of the evolutionary algorithms. e Outcomes:	
-	successful completion of the course, students will be able to	
CO-1:	Comprehend the fuzzy logic and the concept of fuzziness involved in various systems and fu	izzy set
	theory.	
CO-2:	Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, appro-	oximate
	reasoning, fuzzy inference systems, and fuzzy logic	
CO-3:	Describe with genetic algorithms and other random search procedures useful while seeking	global
	optimum in self learning situations.	
CO-4:	Develop some familiarity with current research problems and research methods in Soft Con-	nputing
	Techniques	
S. No.	Contents	Hours
1	Introduction to Soft Computing: Aims of Soft Computing-Foundations of Fuzzy Sets	5
	Theory-Basic Concepts and Properties of Fuzzy Sets- Elements of Fuzzy Mathematics-Fuzzy	
	Relations-Fuzzy Logic	
2	Application of Fuzzy Sets: Applications of Fuzzy Sets-Fuzzy Modeling – Fuzzy Decision	6
	Making-Pattern Analysis and Classification-Fuzzy Control Systems-Fuzzy Information	
2	Processing- Fuzzy Robotics.	
3	Genetic Algorithms: Main Operators- Genetic Algorithm Based Optimization-Principle of	6
	Genetic Algorithm- Genetic Algorithm with Directed Mutation- Comparison of Conventional	
	and Genetic Search Algorithms Issues of GA in practical implementation. Introduction to Particle swarm optimization-PSO operators-GA and PSO in engineering applications	
4	Neuro-Fuzzy Technology: Fuzzy Neural Networks and their learning-Architecture of Neuro-	6
•	Fuzzy Systems- Generation of Fuzzy Rules and membership functions - Fuzzification and	U
	Defuzzyfication in Neuro-Fuzzy Systems- Neuro-Fuzzy Identification - Neuro Fuzzy Control-	
	Combination of Genetic Algorithm with Neural Networks- Combination of Genetic	
	Algorithms and Fuzzy Logic-Neuro-Fuzzy and Genetic Approach in engineering applications.	
5	Basic Evolutionary Processes, EV: A Simple Evolutionary System, Evolutionary Systems as	5
	Problem Solvers, A Historical Perspective, Canonical Evolutionary Algorithms - Evolutionary	
	Programming, Evolution Strategies, A Unified View of Simple EAs- A Common Framework,	
	Population Size	
	Total	28
Sugge	sted Books:	
1.	An Introduction to Genetic Algorithm Melanic Mitchell (MIT Press)	
2.	Evolutionary Algorithm for Solving Multi-objective, Optimization Problems (2nd Edition), Co	llelo,
2	Lament, Veldhnizer (Springer)	
3.	Fuzzy Logic with Engineering Applications Timothy J. Ross (Wiley)	
4.	Sivanandam, Deepa, "Principles of Soft Computing", Wiley	

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेरतकनीकीविश्वविद्यालय,बीकानेर **OFFICE OF THE DEAN ACADEMICS**

Jang J.S.R, Sun C.T. and Mizutani E, "Neuro-Fuzzy and Soft computing", Prentice Hall 5. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill 6.

B. Tech. (Computer Science and Engineering) TCS5-13: Generative AI Credit: 2 Max.Marks: 100 (IA:30, ETE:70) End Term Exams: 3 Hours Course Ohjectives: As a result of successfully completing this course, students will be: End Term Exams: 3 Hours Understand the fundamentals of generative AI and its applications in computer vision and natural language processing. Develop skills in designing and implementing generative models using deep learning frameworks. Analyze and evaluate the performance of generative models in various applications. Course Outcomes: Upon successful completion of the course, students will be able to COurse Outcomes: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. Course Outcomes: Understand the strengths and limitations of various generative models (VAE, GAN, RNN, etc.). Course Outcomes: Understand the strengths and limitations of Generative Models (VAE, GAN, RNN, etc.). Course Outcomes: Understand the strengths and limitations of cenerative Models (VAE, GAN, RNN, etc.).		VII Ser		
Credit: 2 Max. Marks: 100 (1A:30, ETE:70) 2L+0T+ 0P End Term Exams: 3 Hours Course Objectives: As a result of successfully completing this course, students will be: • Understand the fundamentals of generative AI and its applications in computer vision and natural language processing. • Develop skills in designing and implementing generative models using deep learning frameworks. • Analyze and evaluate the performance of generative models in various applications. COurse Outcomes: Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative Models and develop strategies for improvement. S.No. Contents 1 Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.). 6 Applications of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.). 7 3 Generative Models for Computer Vision : Convolutional Neural Networks (RNNs) for image generation, tex.) 7 3 Gen				
Understand End Term Exams: 3 Hours Course Objectives: As a result of successfully completing this course, students will be: • Understand the fundamentals of generative AI and its applications in computer vision and natural language processing. Develop skills in designing and implementing generative models using deep learning frameworks. • Analyze and evaluate the performance of generative models in various applications. Course Outcomes: Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-3: Develop problem-solving skills using generative MI and be able to apply them to real-world problems. CO-3: Develop problem-solving skills using generative models and develop strategies for improvement. S.No. Contents Hours 1 Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.). 6 Applications of Generative AI: Types or Generation, and language modeling, Generation, Image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, and language modeling, Generative models for text processing, Transformers for text generation and language modeling. 7 3 Generative Models for Sequential data (time series, videos, etc.), Advanced techniqques:				
Course Objectives: As a result of successfully completing this course, students will be: • Understand the fundamentals of generative AI and its applications in computer vision and natural language processing. • Develop skills in designing and implementing generative models using deep learning frameworks. • Analyze and evaluate the performance of generative models in various applications. Course Outcomes: Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative AI and be able to apply them to real-world problems. CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. S.No. Contents 1 Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), 6 Applications of Generative AI (Image Generation, Text Generation, etc.) 3 Generative Models for Natural Language Processing: Recurrent Neural Networks (CNNs) for image generation, Text generation, Case studies: Image generative models for text processing, Transformers for text generation and language modeling, Generative models for text processing, Transformers for te				
As a result of successfully completing this course, students will be: • Understand the fundamentals of generative AI and its applications in computer vision and natural language processing. • Develop skills in designing and implementing generative models using deep learning frameworks. • Analyze and evaluate the performance of generative models in various applications. Course Outcomes: Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative AI and be able to apply them to real-world problems. CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. S.No. Contents I Introduction: Objective, scope and outcome of the course I Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), 6 Applications of Generative AI: Types of Generation, Text Generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN Total 2 Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Neural Network Methods for Natural Language Processing'' by Oav Goldberg	Course			
 Understand the fundamentals of generative AI and its applications in computer vision and natural language processing. Develop skills in designing and implementing generative models using deep learning frameworks. Analyze and evaluate the performance of generative models in various applications. Course Outcomes: Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative models and develop strategies for improvement. S.No. Contents Hours Introduction: Objective, scope and outcome of the course Introduction: Objective, scope and outcome of the course Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image generation, Applications of Generative AI (Image Generation, Text Generation, etc.) Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, etc. Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative Models for Sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Neural Network Methods for Natural Language Processing' by Yoav Goldberg 			ents will be:	
 language processing. Develop skills in designing and implementing generative models using deep learning frameworks. Analyze and evaluate the performance of generative models in various applications. Course Outcomes: Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative models and develop strategies for improvement. S. No. Contents Hours Introduction: Objective, scope and outcome of the course Introduction: Objective, scope and outcome of the course Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image generation, detable of text summarization, etc. Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Generative and language translation Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media Deep Learning to an Goodfellow, Yoshua Bengio, and Aaron Courville Neural Network Methods for Natural Language Processing, "Dot Aaron Courville Neural Network Methods for Natural Language Processing" by Yoav Goldberg 	•	· · ·		natural
 Analyze and evaluate the performance of generative models in various applications. Course Outcomes: Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative AI and be able to apply them to real-world problems. CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. S.No. Contents Hours Introduction: Objective, scope and outcome of the course Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), 6 Applications of Generative AI: Types of Generation, Text Generation, Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Neural Network Methods for Natural Language Processing" by Yoav Goldberg 		-		
Course Outcomes: Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative AI and be able to apply them to real-world problems. CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. SNo. Contents Hours 1 Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), 6 Applications of Generative AI (Image Generation, Text Generation, etc.) 7 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generative models for text gummarization, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text summarization, chabots, and language modeling, Generative models for text summarization, chabots, and language modeling, Generative models for	•			rks.
Upon successful completion of the course, students will be able to CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative Models and develop strategies for improvement. S.No. Contents Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI (Image Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI (Image Generation, Text Generation, Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 28 Suggested Books: 1 28 1 Generative Adversarial Networks by and Aaron Courville 3 2 Deep	•		ative models in various applications.	
 CO-1: Design and implement generative models for image and text generation, and other applications. CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative AI and be able to apply them to real-world problems. CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. S. No. Contents Hours Introduction: Objective, scope and outcome of the course 1 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI (Image Generation, Text Generation, etc.) Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generative models for text generation and language modeling, Generative models for text summarization, chatbots, and language translation Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Neural Network Methods for Natural Language Processing" by Yoav Goldberg 				
CO-2: Understand the strengths and limitations of various generative models and be able to select appropriate models for specific tasks. CO-3: Develop problem-solving skills using generative AI and be able to apply them to real-world problems. CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. S.No. Hours 1 Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI (Image Generation, Text Generation, etc.) 6 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 28 Suggested Books: 1. Generative AI Goodfellow, Yoshua Bengio, and Aaron Courville 28 Suggestet Books: 1 28 <	-	-		
models for specific tasks. CO-3: Develop problem-solving skills using generative AI and be able to apply them to real-world problems. CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. S.No. Contents Hours 1 Introduction: Objective, scope and outcome of the course 1 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI (Image Generation, Text Generation, etc.) 6 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Hunge-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 28 Suggested Books: 1 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 1 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4				
CO-3: Develop problem-solving skills using generative AI and be able to apply them to real-world problems. CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. S. No. Contents Hours 1 Introduction: Objective, scope and outcome of the course 1 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI: Tops of Generation, Text Generation, etc.) 6 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 6 Suggested Books: 1 28 7 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 8 Generative Adversari	CO-2:	-	bus generative models and be able to select appr	ropriate
CO-4: Critically evaluate the performance of generative models and develop strategies for improvement. S. No. Contents Hours 1 Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI (Image Generation, Text Generation, etc.) 6 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 28 Suggested Books: 1 Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2 2 Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 3 3 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4		models for specific tasks.		
S. No. Contents Hours 1 Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI (Image Generation, Text Generation, etc.) 6 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 28 Suggested Books: 1 28 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4. Natural Language Processing (almost) from Scratch" by Collobert et al.	CO-3:	Develop problem-solving skills using generative	AI and be able to apply them to real-world pro	blems.
1 Introduction: Objective, scope and outcome of the course 1 2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI (Image Generation, Text Generation, etc.) 6 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 8 Suggested Books: 1 28 9 Image Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2 2 Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 3 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4 4 Natural Language Processing (almost) from Scratch" by Collobert et al. 5	CO-4 :	Critically evaluate the performance of generative	e models and develop strategies for improvement	nt.
2 Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.), Applications of Generative AI (Image Generation, Text Generation, etc.) 6 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 8 Suggested Books: 1 28 9 Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2 2 Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 3 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4 4 Natural Language Processing (almost) from Scratch" by Collobert et al. 5	S. No.	Cont	ents	Hours
Applications of Generative AI (Image Generation, Text Generation, etc.) 3 3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 8 Total 28 Suggested Books: 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4. Natural Language Processing (almost) from Scratch" by Collobert et al. 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 5 5	1	Introduction: Objective, scope and outcome of	f the course	1
3 Generative Models for Computer Vision : Convolutional Neural Networks (CNNs) for image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 7 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 8 Suggested Books: 28 9 Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2. 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4. Natural Language Processing (almost) from Scratch" by Collobert et al. 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg	2	Overview of Generative AI: Types of Ge	nerative Models (VAE, GAN, RNN, etc.),	6
image processing, Generative Adversarial Networks (GANs) for image generation, Variational Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) 7 for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 8 Suggested Books: 1 Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2 2 Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 Natural Language Processing (almost) from Scratch" by Collobert et al. 5 5 Neural Network Methods for Natural Language Processing" by Yoav Goldberg				
Autoencoders (VAEs) for image compression and generation, Case studies: Image generation, Image-to-image translation, etc. Image-to-image translation, etc. 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 5 Suggested Books: 1 Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 28 2 Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 Neural Language Processing (almost) from Scratch" by Collobert et al. 5 5 Neural Network Methods for Natural Language Processing" by Yoav Goldberg 6	3	-		7
Image-to-image translation, etc. Image-to-image translation, etc. 4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 Suggested Books: 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4. Natural Language Processing (almost) from Scratch" by Collobert et al. 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg				
4 Generative Models for Natural Language Processing: Recurrent Neural Networks (RNNs) for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 7 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 8 Suggested Books: 1 Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 28 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4 3. Netural Language Processing (almost) from Scratch" by Collobert et al. 5 Netural Network Methods for Natural Language Processing" by Yoav Goldberg		· · · · ·	nd generation, Case studies: Image generation,	
for text processing, Transformers for text generation and language modeling, Generative models for text summarization, chatbots, and language translation 5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 Suggested Books: 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 28 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Natural Language Processing (almost) from Scratch" by Collobert et al. 5. 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg	4		accessing Bacument Neural Networks (DNNs)	7
models for text summarization, chatbots, and language translation Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 Suggested Books: Total 28 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4. Natural Language Processing (almost) from Scratch" by Collobert et al. 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg	4	0 0	8	/
5 Advanced Generative AI Topics: Generative models for multimodal data (images, text, audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 7 Suggested Books: 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4. Natural Language Processing (almost) from Scratch" by Collobert et al. 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg		· · · ·		
audio, etc.), Generative models for sequential data (time series, videos, etc.), Advanced techniques: Style transfer, CycleGAN 28 Suggested Books: 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4. Natural Language Processing (almost) from Scratch" by Collobert et al. 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg	5			7
techniques: Style transfer, CycleGAN 28 Itechniques: Style transfer, CycleGAN 28 Suggested Books: 28 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 0'Reilly Media 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 5 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4 4. Natural Language Processing (almost) from Scratch" by Collobert et al. 5 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 5	-			
 Suggested Books: 1. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media 2. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 3. Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville 4. Natural Language Processing (almost) from Scratch" by Collobert et al. 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 		-		
 Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Natural Language Processing (almost) from Scratch" by Collobert et al. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 				28
 Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play by David Foster, O'Reilly Media Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Natural Language Processing (almost) from Scratch" by Collobert et al. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 	Sugges	sted Books:		
 Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Natural Language Processing (almost) from Scratch" by Collobert et al. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 			to Paint, Write, Compose, and Play by David F	Foster,
 Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville Natural Language Processing (almost) from Scratch" by Collobert et al. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 		-		
 Natural Language Processing (almost) from Scratch" by Collobert et al. Neural Network Methods for Natural Language Processing" by Yoav Goldberg 		· · ·	-	
5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg		-	-	
			•	
	5.	U	. .	

	VII Semester						
	B. Tech. (Computer Science and Engineering)						
7CS4-21: Deep Learning Lab							
	Credit: 1 Max. Marks: 100 (IA:60, ETE:40)						
	0L+0T+ 2P End Term Exams: 2 Hours						
Course	e Objectives:						
As a re	sult of successfully completing this cour						
•	To provide hands-on experience with o						
•	To understand the upprovisions and initialized of realizing in this do being in						
•	To develop skills in designing, training	g, and evaluating deep neural networks					
	e Outcomes:						
-	successful completion of the course, stud						
		ks using popular frameworks like TensorFlow or PyTorch					
CO-2 :		-world problems in computer vision, natural language processing,					
	and time series analysis						
CO-3:	Understand working principle of various	s types of neural networks					
CO-4:	Understand the working principle of co	nvolution neural networks					
S. No.		List of Experiments					
1	 Demonstration and implementation of Shallow architecture using Python, TensorFlow and Keras i) Google Colaboratory - Cloning GitHub repository, Upload Data, Importing Kaggle's dataset, Basic File operations ii) Implementing Perceptron, iii) Digit Classification: Neural network to classify MNIST dataset Basic implementation of a deep Learning models in PyTorch and Tensor Flow. Tune its performance by 						
	adding additional layers provided by the library.						
3		ch by using deep learning via gradient descent; recursive chain rule off, regularization; output units: linear, softmax; hidden units: tanh,					
4	Implement a simple CNN starting from these with Visualization in PyTorch and	m filtering, Convolution and pooling operations and arithmetic of d Tensorflow.					
5	ConvNet Architectures: Implement a GoogLeNet, ResNet, MobileNet-v1.	famous convNet architectures - AlexNet, ZFNet, VGG, C3D,					
6	Convolution Neural Network application using CNN ii) Face recognition using C	on using TensorFlow and Keras, i) Classification of MNIST Dataset CNN					
7	Image denoising (Fashion dataset) using	ng Auto Encoders Handling Color Image in Neural Network aka					
	Stacked Auto Encoders (Denoising)						
8	Text processing, Language Modeling u	using RNN					
9	Time Series Prediction using RNN						
10	Sentiment Analysis using LSTM						
11	Image generation using GAN						
Sugges	sted Books:						
1.	Deep Learning, Ian Goodfellow Yoshu https://www.deeplearningbook.org/)	a Bengio Aaron Courville, MIT Press, 2017 (link					
2.	Deep Learning Step by Step with Pytho						
3. 4.		ach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017 a Bengio Aaron Courville, MIT Press, 2017					
т.	Deep Learning, fan Goodrenow Toshu	201510 11000 Courvine, 1911 1 1055, 2017					

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेरतकनीकीविश्वविद्यालय,बीकानेर **OFFICE OF THE DEAN ACADEMICS**

James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012. 5. 6. François Chollet "Deep Learning with Python," First Edition, Manning Publication, 2018 Neural Networks and Deep Learning, Michael Nielsen, Determination Press (2015) (link: http://neuralnetworksanddeeplearning.com/)

	VII Semester		
	B. Tech. (Computer Science and Engin	0	
	7CS7-50 : B.Tech. Project – I (BTP	– P1)	
Credit:	2 M	ax. Marks: 100 ((IA:60, ETE:40)
0L+0T+	-3P Mode of eva	aluation: Report	and presentation
	Assessment or Evaluati	on	
	The evaluation criteria for B. Tech.	Project - I	
S. No.	Category	Internal Assessment	End Term Examinations
		Max Marks in %	Max Marks in %
1	Project Motivation, Conceptual Design, Innovativeness, and utility in actual life application	10%	10%
2	Project Ideation, Project Formulation, and Design	10%	10%
3	Project Prototyping & Finalization, Project Planning & Timeline (Project Viability for 2 semesters)	10%	10%
4	Technology Used and Method	10%	10%
5	Project Execution, Development, Deployment, Demonstration and Delivery (Working and completeness) required to justify current semester work and presentation	30%	30%
6	Report writing and project documentation (organization of the report, clarity, use of figure/diagram, writing skills, presentation of result, paper publication, patent application, etc.)	20%	20%
7	Professional ethics (teamwork, punctuality, novelty, etc.)	10%	10%
	Total	100%	100%

	VIII Semester B. Tech. (Computer Science and Engi	neering)						
	8CS7-50 : B.Tech. Project -II	8/						
Credit:	Credit: 4 Max. Marks: 100 (IA:60, ETE:40							
0L+0T+	-3P Mode of eva	aluation: Report	and presentation					
	Assessment or Evaluati	on						
	The evaluation criteria for B. Tech.	Project - II						
S. No.	Category	Internal Assessment	End Term Examinations					
		Max Marks in %	Max Marks in %					
1	Project Motivation, Conceptual Design, Innovativeness, and utility in actual life application	10%	10%					
2	Project Ideation, Project Formulation, and Design	10%	10%					
3	Technology Used and Method	10%	10%					
4	Project Execution, Development, Deployment, Demonstration and Delivery (Working and completeness) required to justify current semester work and presentation	30%	30%					
5	Report writing and project documentation (organization of the report, clarity, use of figure/diagram, writing skills, presentation of result, paper publication, patent application, etc.)	20%	20%					
6	Professional ethics (teamwork, punctuality, novelty, etc.)	10%	10%					
7	Paper Published in reputed journals (SCE, SCIE, Scopus, UGC care or any peer-reviewed journal), Paper publications (International or National conferences [IEEE, ACM, Springer, etc]), and presentations at Hackathon (Institute level or SIH) or any institute, state or national level project							
	presentation competitions. Total	10% 100%	10% 100%					

