

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE of B. Tech. (Artificial Intelligence) VII & VIII Semester

[Draft Syllabus Subjected to approval]

Effective for the students admitted in year 2021-22 and onwards Approved by academic council meeting held on

Teaching & Examination Scheme

B. Tech. (Artificial Intelligence)

4rd Year – VII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title	I	Iour	'S	Exam Hours		Marks		Credit
				L	T	Р	-	IA	ETE	Total	-
			TH	EOI	RY						
1	DC	7AI4-01	Deep Learning	3	-	-	3	30	70	100	3
2	UE	Univer Course co from the	sity Elective subject ode and title to be selected e university elective pool of subjects	3	-	-	3	30	70	100	3
3	DE	7AI5-11 7AI5-12 7AI5-13	Soft Computing and Evolutionary Algorithms Pattern Recognition Generative AI	2	-	-	3	30	70	100	2
Sub Total			otal	8	00	00	-	90	210	300	8
			PRACTICAL &	SE	SSI	ON	AL				•
4	DC	7AI4-21	Deep Learning Lab	-	-	2	-	60	40	100	1
5	UI	7AI7-30	Industrial Training	-	-	1	-	60	40	100	3
	UI	7AI7-50	B.Tech. Project - I			3	-	60	40	100	2
6	CCA	7AI8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	1
Sub Total			00	00	06	-	180	220	400	7	
Total			1	8	00	06	-	270	430	700	15

L = Lecture, T = Tutorial, P = Practical, IA = Internal Assessment, ETE = End Term Exam, Cr = Credits

Teaching & Examination Scheme B. Tech. (Artificial Intelligence)

4rd Year – VIII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title	I	Hour	S	Exam Hours		Marks		Credit
				L	Т	Р		IA	ЕТЕ	Total	
			TH	EO	RY	I					
1	UE	Univer Course co from the	sity Elective subject ode and title to be selected e university elective pool of subjects	3	-	-	3	30	70	100	3
Sub Total			3	00	00		30	70	100	3	
			PRACTICAL	&	SES	SIC	DNAL				
2	DC	8AI4-40	Seminar	-	-	2	-	60	40	100	2
5	UI	8AI7-50	B.Tech. Project - II	-	-	3	-	60	40	100	4
12	CCA	8AI8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	2
		Sub To	otal	00	00	05	-	120	180	300	8
		Tota	1	03	00	05	-	150	250	400	11

L = Lecture, T = Tutorial, = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

VII Semester B. Tech. (Artificial Intelligence)						
7AI4-01: Deep Learning						
	Credit: 3 Max. Marks: 100 (IA:30, ETE:70)					
	3L+0T+ 0P	End Term Exams: 3 Hours				
• Co	urse Objectives:					
As a re	sult of successfully completing this cour	se, students will:				
• To de	escribe the major differences between dee	ep learning and other types of machine learning algorith	ms.			
• To e	xplain the fundamental methods involved	l in deep learning.				
• To un	iderstand various aspects of Deep Earnin	g and its building block.				
• To un	iderstand and differentiate between the n	najor types of neural network architectures.				
• To Se	elect or design neural network architectu	res for new data problems based on their requirements a	and problem			
charact	eristics and analyze their performance.					
• lo un	iderstand basic working principles and he	ow Deep Learning is used to solve real-world problems				
Course	e Outcomes:					
Upon s	Able to learn the fundamental concerts	tudents will be able to				
CO-1:	Able to learn the fundamental concepts of	of neural networks and deep neural networks.				
CO-2:	Able to understand the working principle	c O A Able to evolve and design neural network for	r rool work			
co-s:	Able to perform hyperparameter tuning	. CO-4. Able to analyze and design neural network to	or real work			
	11. Able to understand working principle of	various types of neural networks				
CO-3.	Able to understand working principle of	Contonts	Hours			
5. NO. 1	Introduction to Noural Notworks Intr	contents	7			
1	characteristics of neural networks term	inclose neurons perceptron backpropagation Basic	/			
	learning laws Activation and Loss fund	stion - Function approximation applications				
2	Introduction to Convolution Neur	ral Networks CNN Architecture and Operations	0			
2	convolutional layer Pooling layer Vari	ants of the Convolution Model Forward and Backward	,			
	propagation Building a Deep Neural N	Jetwork Improving Deep Neural Networks Training a				
	deep neural network hyper-parameter	tuning Hidden layers Generalization Gap – Under-				
	fitting Vs Over-fitting – Optimization.	Normalization.				
3	Practical aspects of Deep Learning:	Train/Dev / Test sets, Bias/variance, Overfitting and	9			
	regularization, Linear models and op	timization, Vanishing/exploding gradients, Gradient				
	checking – Logistic Regression, Convo	lution Neural Networks, RNN and Backpropagation –				
	Convolutions and Pooling					
4	Optimization algorithms: Mini-batch gr	adient descent, exponentially weighted averages, RMS	8			
	prop, Learning rate decay, the proble	m of local optima, Batch norm – Parameter tuning				
	process.					
5	Neural Network Architectures: Recur	rent Neural Networks, Adversarial NN, Spectral CNN,	9			
	Self-Organizing Maps, Restricted Boltz	mann Machines, Long Short-Term Memory Networks				
	(LSTM) and Deep Reinforcement Lo	earning - Tensor Flow, Keras or MatConvNet for				
	implementation					
		Total	42			
Sugges	sted Books:					
1.	1. Deep Learning, Ian Goodfellow Yos	hua Bengio Aaron Courville, MIT Press, 2017				
	(link:https://www.deeplearningbook.org	g/)				
2.	2. Deep Learning Step by Step with Py	thon, N D Lewis, 2016	017			
<i>.</i>	5. Deep Learning: A Practitioner's App	roach, Josh Patterson, Adam Gibson, O'Reilly Media, 2 hus Dancia Aaron Councilla, MIT Dury 2017	017			
4. 5	4. Deep Learning, Ian Goodfellow Yos	nua dengio Aaron Courville, MIT Press, 2017				
). 2	6 Erançois Chollet "Deen Learning with	the Bython "First Edition Manning Dublication 2012.				
0. 7	7 Neural Networks and Deep Learning Wi	Michael Nielsen Determination Pross (2015) (link)				
1.	http://neuralnetworksanddaanlaarning.	, menael meisen, Determination fless (2013) (IIIK. $pom/$)				

VII Semester B. Tech (Artificial Intelligence)						
7AI4-11: Soft Computing and Evolutionary Algorithms						
	Credit: 2 Max Marke: 100 (IA·30 FTF·70)					
	I + 0T + 0D End Town Evongs 2 Hours					
C		End Term Exams. 5 Hours				
Course	Able to understand basics of Eugzy Set	completing this course, students will:				
	Able to understand the concents of the ge	netic algorithms				
•	Able to understand the idea of the evolut	ionary algorithms				
Course	e Outcomes: Upon successful completio	n of the course students will be able to				
CO-1:	Comprehend the fuzzy logic and the co	ncept of fuzziness involved in various systems and fu	izzv set			
	theory.		J ~~~			
CO-2:	Understand the concepts of fuzzy set	s, knowledge representation using fuzzy rules, appro	oximate			
	reasoning, fuzzy inference systems, and	fuzzy logic				
CO-3:	Describe with genetic algorithms and	other random search procedures useful while seeking	g global			
	optimum in self learning situations.					
CO-4:	Develop some familiarity with current	research problems and research methods in Soft Cor	nputing			
	Techniques					
S. No.		Contents	Hours			
1	Introduction to Soft Computing: Aims of	of Soft Computing-Foundations of Fuzzy Sets Theory-				
	Basic Concepts and Properties of Fu	uzzy Sets- Elements of Fuzzy Mathematics-Fuzzy	5			
	Relations-Fuzzy Logic					
2	Application of Fuzzy Sets: Applicatio	ns of Fuzzy Sets-Fuzzy Modeling - Fuzzy Decision				
	Making-Pattern Analysis and Classif	fication-Fuzzy Control Systems-Fuzzy Information	6			
	Processing- Fuzzy Robotics.					
3	Genetic Algorithms: Main Operators-	Genetic Algorithm Based Optimization-Principle of	6			
	Genetic Algorithm- Genetic Algorithm	with Directed Mutation- Comparison of Conventional				
	and Genetic Search Algorithms Issues	of GA in practical implementation. Introduction to				
	Particle swarm optimization-PSO opera	tors-GA and PSO in engineering applications	(
4	Neuro-Fuzzy Technology: Fuzzy Neura	In Networks and their learning-Architecture of Neuro-	0			
	Puzzy Systems- Generation of Fuzzy Defuzzy	Nouro Euzzy Identification Nouro Euzzy Control				
	Combination of Genetic Algorithm	with Neural Networks- Combination of Genetic				
	Algorithms and Fuzzy Logic-Neuro-Fuz	zzy and Genetic Approach in engineering applications				
	rigoritini sund ruzzy zogie rieuro ruz	by and Genetic reprotein in engineering appreations.				
5	Basic Evolutionary Processes, EV: A S	imple Evolutionary System, Evolutionary Systems as	5			
_	Problem Solvers, A Historical Perspecti	ve, Canonical Evolutionary Algorithms - Evolutionary				
	Programming, Evolution Strategies, A U	Jnified View of Simple EAs- A Common Framework,				
	Population Size	*				
		Total	28			
Sugges	sted Books:					
1. 1. An Introduction to Genetic Algorithm Melanic Mitchell (MIT Press)						
2 2 Evolutionary Algorithm for Solving Multi-objective Ontimization Problems (2nd Edition) Collelo						
	Lament		,			
3	Veldhnizer (Springer) 3 Fuzzy Logic w	ith Engineering Applications Timothy J Ross (Wiley)				
	4. Sivanandam, Deepa, "Principles of S	oft Computing", Wilev				
	5.Jang J.S.R, Sun C.T. and Mizutani E.	"Neuro-Fuzzy and Soft computing", Prentice Hall				
	6.Timothy J. Ross, "Fuzzy Logic with E	Engineering Applications", McGraw Hill				

VII Semester B. Tech. (Artificial Intelligence)						
7AI4-12:Pattern Recognition						
	Credit: 2 Max. Marks: 100 (IA:30, ETE:70)					
	2L+0T+ 0P End Term Exams: 3 Hours					
Cours As a r soft co compu Course	e Objectives: esult of successfully completing this co omputing concepts and techniques and tting based solutions for real-world pro- e Outcomes:	ourse, students will: • Students should be able to und I foster their abilities in designing and implementi bblems	erstand ng soft			
Upon CO-1: CO-2:	successful completion of the course, s Describe and compare a variety of pattern classifier combination techniq Apply pattern recognition techniques recognition	tudents will be able to pattern classification, structural pattern recognitionues s to real-world problems such as document analy	on, and sis and			
CO-3:	Summarize, analyze and relate researc	h in the pattern recognition area				
S. No.		Contents	Hour s			
1	Introduction: Objective, scope and o	outcome of the course.	1			
2	Basics Of Probability, Random Proc : Bayes' theorem , Minimum-err functions, Decision surfaces, Norm Features	esses And Linear Algebra, Bayes Decision Theory or-rate classification, Classifiers, Discriminant al density and discriminant functions, Discrete	7			
3	Parameter Estimation Methods : Maximum a Posteriori estimation, Ba	Maximum-Likelihood estimation, Gaussian case, avesian estimation, Gaussian case	6			
4	Unsupervised Learning and Cl Algorithms for clustering, K-Means, I Gaussian mixture models, Expectatio Maximum entropy estimation	ustering: Criterion functions for clustering, Hierarchical and other methods, Cluster validation, n-Maximization method for parameter estimation,	7			
5	Sequential Pattern Recognition: H Continuous HMMs Nonparametric Te Method, K-Nearest Neighbor Method	idden Markov Models (HMMs), Discrete Hmms, echniques For Density Estimation Parzen-Window 17 Tot	7			
		Total	28			
Sugge Sugge 1. Patt 2. Patt Press 2 3. Patt Princip	sted Books: sted Books: ern Classification, Richard O. Duda, P ern Recognition, Konstantinos Koutro 2009 ern Recognition and Machine Learning ples of Compiler Design," McGraw-Hi	eter E. Hart, David G. Stork John Wiley 2001 umbas and Sergios Theodoridis 4th Edition., Acade g, Bishop, Christopher,Springer 2006V Raghvan, " 11, ISBN:9780070144712	emic			

VII Semester B. Tech. (Artificial Intelligence)						
7AI4-13:Generative AI						
	Credit: 2 Max. Marks: 100 (IA:30, ETE:70)					
	2L+0T+ 0P	End Term Exams: 3 Hours				
Cours As a resoft co compu	e Objectives: esult of successfully completing this co omputing concepts and techniques and ting based solutions for real-world pro-	ourse, students will: • Students should be able to und I foster their abilities in designing and implementioblems	erstand ng soft			
Course	e Outcomes:					
Upon	successful completion of the course, s	tudents will be able to	1			
CO-1:	Describe and compare a variety of	pattern classification, structural pattern recognition	on, and			
a a	pattern classifier combination techniq	lues				
CO-2:	Apply pattern recognition technique	s to real-world problems such as document analy	sis and			
	recognition					
CO-3:	Summarize, analyze and relate researc	ch in the pattern recognition area				
S.		Contents	Hour			
No.			S			
1	Introduction: Objective, scope and	outcome of the course.	1			
2	Overview of Generative AI : Types Applications of Generative AI (Imag	of Generative Models (VAE, GAN, RNN, etc.), e Generation, Text Generation, etc.	7			
3	Generative Models for Computer for image processing, Generative Ad Variational Autoencoders (VAEs) for Image generation. Image-to-image tr	Vision : Convolutional Neural Networks (CNNs) versarial Networks (GANs) for image generation, r image compression and generation, Case studies: anslation, etc.	6			
4	Generative Models for Natural La (RNNs) for text processing, Transfor Generative models for text summarized	Inguage Processing: Recurrent Neural Networks rmers for text generation and language modeling, cation, chatbots, and language translation,	7			
5	Advanced Generative AI Topics:	Generative models for multimodal data (images,	7			
	text, audio, etc.), Generative model	s for sequential data (time series, videos, etc.),				
	Advanced techniques: Style transfer,	CycleGAN, etc				
		Total	28			
Suggested Books:						
1.	Generative Deep Learning" by David	d Foster				
2.	Deep Learning" by Ian Goodfellow,	Yoshua Bengio, and Aaron Courville				
3.	Generative Adversarial Networks" b	y Ian Goodfellow, Yoshua Bengio, and Aaron Cou	rville			
4.	Natural Language Processing (almost	st) from Scratch" by Collobert et al.				
5.	Neural Network Methods for Natura	l Language Processing" by Yoav Goldberg				

6. Deep Learning for Computer Vision with Python" by Adrian Rosebrock

VII Semester						
B. Tech. (Artificial Intelligence)						
7AI4-21: Deep Learning Lab						
	Credit: 1 Max. Marks: 100 (IA:60, ETE:40)					
	0L+0T+ 2P	End Term Exams: 2 Hours				
Course	e Objectives: As a result of successfully c	ompleting this course, students will:				
• To de	escribe the major differences between deep	learning and other types of machine learning algorithms.				
• 10 e	aderstand various aspects of deep learning	and its building block				
• To ur	iderstand and differentiate between the ma	jor types of neural network architectures.				
• To S	elect or design neural network architecture	s for new data problems based on their requirements and problem				
charact	teristics and analyze their performance.					
• To un	nderstand basic working principles and how	w Deep Learning is used to solve real-world problems				
Course	Able to learn the fundemental completion of	in the course, students will be able to				
CO-1	Able to reach the fundamental concepts of	neural networks and deep neural networks.				
CO-2:	Able to perform hyperperpendent typing	or convolution neural networks.				
CO-3	Able to perform hyperparameter tuning.	Is for real work mechan				
CO-4.	Able to understand working principle of y	arious tures of pourel networks				
CO-5:						
5. NO.	1	List of Experiments				
1	Demonstration and implementation of Sh	allow architecture using Python, TensorFlow and Keras i) Google				
	ii) Implementing Perceptron iii) Digit C	y, Upload Data, Importing Kaggle's dataset, Basic File operations				
2	Basic implementation of a deep Learnin	g models in PyTorch and Tensor Flow. Tune its performance by				
_	adding additional layers provided by the library.					
3	Implement custom operations in PyTorch	by using deep learning via gradient descent; recursive chain rule				
	(backpropagation); bias-variance tradeof	f, regularization; output units: linear, softmax; hidden units: tanh,				
	RELU.					
4	Implement a simple CNN starting from	filtering, Convolution and pooling operations and arithmetic of				
5	these with Visualization in PyTorch and ConvNet, Architectures: Implement of	Tensorilow.				
5	GoogleNet ResNet MobileNet-v1	amous convinct architectures - Alexinet, Zrinet, VOO, C5D,				
6	Convolution Neural Network application	using TensorFlow and Keras, i) Classification of MNIST Dataset				
-	using CNN ii) Face recognition using CN	N				
7	Image denoising (Fashion dataset) using	g Auto Encoders Handling Color Image in Neural Network aka				
	Stacked Auto Encoders (Denoising)					
8	Text processing, Language Modeling usi	ng RNN				
9	Time Series Prediction using RNN					
10	Sentiment Analysis using LSTM					
11 Image generation using GAN						
Sugges	sted Books:					
	1 Deep Learning, Ian Goodfellow Yo	shua Bengio Aaron Courville, MIT Press, 2017 (link:				
	https://www.deeplearningbook.org/)	there NLD Lewis 2016				
	2. Deep Learning Step by Step with Py 3. Deep Learning: A Prostitionar's Apr	Inon, N D Lewis, 2010				
	4 4 Deep Learning Ian Goodfellow V	oshua Bengio Aaron Courville MIT Press 2017				
	Deep Learning, fan Goodfellow T	55huu Dengio Huron Courvine, 1411 11055, 2017				

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

- 5. James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.
- 6. François Chollet "Deep Learning with Python," First Edition, Manning Publication,2018 Neural Networks and Deep Learning, Michael Nielsen, Determination Press (2015) (link: http://neuralnetworksanddeeplearning.com/)

VII Semester B. Tech. (Artificial Intelligence)								
	7AI7-50 : B.Tech. Project – I (BTP – P1)							
Credit:	2	Max. Marks: 100	(IA:60, ETE:40)					
0L+0T+	-3P Mode	of evaluation: Repor	t and presentation					
	Assessment or Eval	uation						
~ • •	The evaluation criteria for B. T	<u>Cech. Project - I</u>						
S. No.	Category	Internal Assessment	End Term Examinations					
		Max Marks in %	Max Marks in %					
1	Project Motivation, Conceptual De	sign,						
	Innovativeness, and utility in actual life applicat	ion 10%	10%					
2	Project Ideation, Project Formulation, and Desig	gn 10%	10%					
3	Project Prototyping & Finalization, Project Plan	ning						
	& Timeline (Project Viability for 2 semesters)	10%	10%					
4	Technology Used and Method	10%	10%					
5	Project Execution, Development, Deployn Demonstration and Delivery (Working completeness) required to justify current sem work and presentation	nent, and ester 30%	30%					
6	Report writing and project documenta (organization of the report, clarity, use figure/diagram, writing skills, presentation of re paper publication, patent application, etc.)	ation of sult, 20%	20%					
7	Professional ethics (teamwork, punctuality, nov	elty,						
	etc.)	10%	10%					
	Total	100%	100%					

	VIII Semester B. Tech. (Artificial Intelligence)							
	8AI7-50 : B.Tech. Project -II							
Credit:	redit: 4 Max. Marks: 100 (IA:60, ETE:40							
0L+0T+	-3P	Mode of eva	aluation: Report	and presentation				
		Assessment or Evaluati	on					
	The eva	duation criteria for B. Tech.	Project - II					
S. No.		Category	Internal Assessment	End Term Examinations				
			Max Marks in %	Max Marks in %				
1	Project Motivat	on, Conceptual Design,						
	Innovativeness, and	utility in actual life application	10%	10%				
2	Project Ideation, Pro	oject Formulation, and Design	10%	10%				
3	Technology Used and Method		10%	10%				
4	Project Execution, Demonstration an completeness) requ	Development, Deployment, d Delivery (Working and ired to justify current semester						
	work and presentation	on	30%	30%				
5	Report writing (organization of figure/diagram, writ	and project documentation the report, clarity, use of ing skills, presentation of result,						
	paper publication, p	atent application, etc.)	20%	20%				
6	Professional ethics (etc.)	teamwork, punctuality, novelty,	10%	10%				
7	Paper Published in Scopus, UGC care Paper publications conferences [IEEE, presentations at Hac any institute, sta presentation compet	reputed journals (SCE, SCIE, or any peer-reviewed journal), (International or National ACM, Springer, etc]), and kathon (Institute level or SIH) or ate or national level project itions.	10%	10%				
	1	otal	100%	100%				