

Roli

Total No. of Pages.: 02

### 21N506/

B.Tech. II Sem (New Scheme) Main Exam Acad Session 2022-23

#### All Branch

(2FY2-06) - Introduction to Built Environment

Time: 3 Hours

Maximum Marks: 70 Min. Passing Marks:

### Instructions to Candidates:

Part – A: Short answer questions (up to 25 words) 10 \* 2 marks = 20 marks. All 10 questions are compulsory.

Part – B: Analytical/Problem Solving questions 5 \* 4 marks = 20 marks. Candidates have to answer 5 questions out of 7.

Part – C: Descriptive/Analytical/Problem Solving/ Design questions 3 \* 10 marks = 30 marks. Candidates have to answer 3 questions out of 5.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting materials is permitted during examination. (Mentioned in form No. 205)

| 12                                                                    | 2   |
|-----------------------------------------------------------------------|-----|
| PART-A (ATTEMPT ALL)                                                  |     |
| Q.1. Define built environment.                                        | [2] |
| Q.2. What are the soil types and their responses under load?          | [2] |
| Q.3, What do you mean by earthquake resistant design?                 | [2] |
| Q.4. List the factors affecting the built environment.                | [2] |
| Q.5. What do you mean by rani-water harvesting?                       | [2] |
| Q.6. What do you understand by hydrological cycle?                    | [2] |
| Q.7 What are field-water storage structures?                          | [2] |
| Q.8. What do you mean by a deep foundation?                           | [2] |
| Q.9. What do you mean by building bye-laws?                           | [2] |
| Q.10. Mention any two ways steel is used in conventional constructer. | [2] |
|                                                                       |     |

P.T.O.

## PART-B

| Q.1,  | Explain various types of transportation system                                         | ms.                                                             | [4]          |
|-------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|
| Q.2.  | Describe lighting aspects of building.                                                 |                                                                 | [4]          |
| Q.3,  | Explain the modern world approach towards                                              | ds built environment in context of securities                   |              |
|       | emergencies.                                                                           |                                                                 | [4]          |
| Q.4.  | Discuss the elements of built environment.                                             |                                                                 | [4]          |
| Q.5   | Discuss thermal comfort and insulation, and                                            | climate responsive design.                                      | [4]          |
| Q.6.  | Explain environmental acts and regulations.                                            |                                                                 | [4]          |
| Q.7.  | Describe various road traffic signs.                                                   |                                                                 | [4]          |
|       | PAR                                                                                    | et-C                                                            |              |
| Q.1.  | Explain the smart concept in context of cites,                                         | environment, water, metering a                                  | ınd retail.  |
|       |                                                                                        |                                                                 | [10]         |
| Q.2.  | Describe the five engineering divisions and their responsibility in built environment. |                                                                 |              |
| •     |                                                                                        |                                                                 | [10]         |
| Q.3.  | Discuss various aspects of building planning.                                          | Also discuss the need of standa                                 | ard codes.   |
|       | •                                                                                      |                                                                 | [10]         |
| Q.4.  | What do you understand by building ergonor                                             | nics? Describe acoustic and the                                 | rmal aspects |
| •     | aspects of a building.                                                                 |                                                                 | [10]         |
| Q.5,/ | Write short notes on any four:                                                         |                                                                 | [10]         |
|       | a. Additive construction using concrete                                                |                                                                 |              |
|       | b. Traffic calming                                                                     |                                                                 |              |
|       | c. Reuse and saving of water                                                           | https://www.btubika                                             | ner.com      |
|       | d. Chemical cycles                                                                     | Whatsapp @ 93009                                                | 30012        |
|       | e. · Water quality standards                                                           | Send your old paper &                                           | _            |
|       | f. Masonry construction                                                                | अपने पुराने पेपर्स भेजे और 10 रुपये प<br>Paytm or Google Pay से |              |

Z-350

21N502 /

Roll No. \_\_\_\_

Total No. of Pages.: 03

### 21N502/

B.Tech. II Sem (New Scheme) Main Exam Acad Session 2022-23

All Branch

(2FY1-02) - Engineering Physics

Time: 3 Hours

Maximum Marks: 70 Min. Passing Marks:

### Instructions to Candidates:

Part – A: Short answer questions (up to 25 words) 10 \* 2 marks = 20 marks. All 10 questions are compulsory.

Part – B: Analytical/Problem Solving questions 5 \* 4 marks = 20 marks. Candidates have to answer 5 questions out of 7.

Part – C: Descriptive/Analytical/Problem Solving/ Design questions 3 \* 10 marks = 30 marks. Candidates have to answer 3 questions out of 5.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting materials is permitted during examination. (Mentioned in form No. 205)

|        | 2                                                                                                                                                           |                                                            |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
|        | PART-A                                                                                                                                                      | 1                                                          |  |
|        | of dark Newton rings. [2]                                                                                                                                   | 0.1                                                        |  |
|        | the formula for the intensity of secondary maxima.                                                                                                          | Q.1. Write the ratio of the diameter of dark Newton rings. |  |
|        | [2]                                                                                                                                                         | Q.2.                                                       |  |
|        | ula for energy density. [2]                                                                                                                                 | 0.3                                                        |  |
|        | (2)                                                                                                                                                         |                                                            |  |
|        | (4)                                                                                                                                                         |                                                            |  |
|        | function.                                                                                                                                                   |                                                            |  |
|        | [2]                                                                                                                                                         | _                                                          |  |
| P.T.O. | ffect?                                                                                                                                                      | _                                                          |  |
|        | the formula for the intensity of secondary maxima.  [2]  ula for energy density.  [2]  tical fibre.  [2]  mula for shift in wavelength.  [2]  [2]  [2]  [2] | Q.2. ~ Q.3. Q.4 <sub>y</sub> Q.5, Q.6. Q.7. Q.8.           |  |

- Explain the physical interpretation of curl. [2] Q.9. Q.10. - Explain the displacement current. [2] PART-B In Newton's ring experiment the diameter of nth and (n+1)th rings are 4.2 mm and 7.0 mm. Q.Ł If the radius of curvature of lens is 2m, then find the wavelength used. [4] Light of wavelength 6000 A<sup>0</sup> is incident normally on a slit of width 24 x 10<sup>-5</sup>cm. Determine Q.2, the angular position of second minimum. [4] Calculate the refractive indices of the core and cladding materials of a fiber from the data. Q.3. NA = 0.22 and  $\Delta$  = 0.012. [4] Q.4. Write a short note on semiconductor laser. [4] An electron is confined to a box of length 10-9m. Calculate the minimum uncertainty in its Q.5. velocity. Q.6. The hall coefficient of certain silicon specimens found to be -7.5 x 10<sup>-5</sup>m<sup>3</sup>/C at a certain temperature. If the conductivity is found to be 200  $\Omega^{-1}$  m<sup>-1</sup>. Calculate the density of charge carriers. https://www.btubikaner.com [4] Find  $\nabla .V$  for the following vector fields: Q.7. [4] a.  $V = (y^2 + z^2)(x + y)\hat{x} + (z^2 + x^2)(y + z)\hat{y} + (x^2 + y^2)(z + x)\hat{z}$ b.  $V = f_1(y_1z)\hat{x} + f_2(x_1z)\hat{y} + f_3(x_1y)\hat{z}$ PART- C
  - Q.1. Describe the construction and working of Michelson Interferometer. Drive the expression for determine the wavelength difference of two components of a line by Michelson Interferometer.
  - Q.2. Explain the term absorption, spontaneous emission and stimulated emission and derive a relation between Einstein's coefficients.

| Q.3. | Write down schrodinger's equation for a particle confined in a 1-D box. Obtain the               |      |  |
|------|--------------------------------------------------------------------------------------------------|------|--|
|      | wave function for a particle confined in this box.                                               | [10] |  |
| Q.4. | 4. Describe the formation of energy band in solids and hence how it helps to classify the materi |      |  |
| 4    | into conductors and insulators.                                                                  | [10] |  |
| Q.5. | 5. Deduce the Maxwell's equations for free space and prove that electromagnetic waves are        |      |  |
|      | transverse.                                                                                      | [10] |  |
|      |                                                                                                  |      |  |
|      | ******                                                                                           | **   |  |



Roll No.

21N501/

Total No. of Pages.: 03

B. Tech. H Sem (New Scheme) Main Exam. Acad Session 2022-23

All Branch

(2FY 1-01) - Engineering Mathematics II

Time: 3 Hours

Maximum Marks: 70 Min. Passing Marks:

# Instructions to Candidates:

Part - A: Short answer questions (up to 25 words) 10 \* 2 marks = 20 marks. All 10 questions are compulsory.

Part - B: Analytical/Problem Solving questions 5 \* 4 marks = 20 marks. Candidates have to answer 5 questions out of 7.

Part - C: Descriptive/Analytical/Problem Solving/ Design questions 3 \* 10 marks = 30 marks. Candidates have to answer 3 questions out of 5.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting materials is permitted during examination. (Mentioned in form No. 205)

| 1    |                                                                                                     |     |
|------|-----------------------------------------------------------------------------------------------------|-----|
|      | PART-A                                                                                              |     |
| 91.  | Evaluate $\left(\frac{-9}{2}\right)$ .                                                              | [2] |
| 0.2/ | Evaluate $\int_0^1 \int_0^{1-x} xy dx dy$ Evaluate $\int_0^2 (4-x^2)^{\frac{3}{2}} dx$              | [2] |
| 98.  | Evaluate $\int_{0}^{2} (4-x^{2})^{\frac{3}{2}} dx$ .                                                | [2] |
| 9,4. | Evaluate $\frac{d}{dt}(\vec{r} \times \frac{d\vec{r}}{dt})$                                         | [2] |
| Q.5. | Find the directional derivative of                                                                  | [2] |
| /    | $\theta(x,y,z) = (x^2 - 2y^2 + 4z \text{ at (1, 1,-1) in the direction of the vector } 2i + j - k.$ |     |

P.T.O.

State Stoke's theorem. [2] Define right circular cylinder. [2] Find the radius of the circle [2]  $x^{2} + y^{2} + z^{2} - 2y - 4z = 11, x + 2y + 2z = 15.$ Q.9. Find the eigen values of the matrix. [2]  $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ Are the following vectors linearly independent Q.10. [2]  $x_1 = (1, 3, 4, 2), x_2 = (1, 2, 3, 4), x_3 = (2, 3, 4, 9)$ PART-B Q.1 Evaluate by changing the order of integration. [4]  $\int_0^\infty \int_x^\infty \frac{e^{-y}}{v} dx dy.$ [4] Q.2. Show that  $\int_0^2 x (8-x^3)^{1/3} dx = \frac{16\pi}{9\sqrt{3}}$ Q.3. if r = xi + yj + zk and r = |r| then find  $\nabla^2 r''$ Q.4. Use Green's theorem to evaluate the line integral  $\int_{0}^{\infty} [(xy + y^2)dx + x^2dy]$ [4] Where C is the boundary of the closed region bounded by y = x and  $y = x^2$  [4] Q.5. Find the equation of the sphere having the circle [4]  $x^{2} + y^{2} + z^{2} = 9, x - 2y + 2z = 5 \text{ as a great circle.}$ Determine the rank of matrix [4]  $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix}$ Q.7. Investigate for consistency of the following equations and if possible, Find the solutions: [4]

4x-2y+6z=8; x+y-3z=-1; 15x-3y+9z=21

## PART-C

- Find the volume and surface area of the solid formed by revolution of the cardioid Q.1. [10]  $r = a (1 + \cos \theta)$  about the initial time.
  - [10]

Use Stoke's theorem to evaluate Q.2.

$$\int_{c} [(x+2y)dx + (x-z)dy + (y-z)dz]$$

Where c is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6)oriented in the anti-clockwise direction.

- [10] Q.3 Find the equation of the sphere which passes through the circle  $x^2 + y^2 = 4$ , z = 0 and is cut by the plane x + 2y + 2z = 0 in a circle of radius 3.
- [10] Q.4. Find the eigen values and eigen vectors of the matrix  $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3 \end{bmatrix}$
- Q.5. Find the values of the constants a, b, c so that the directional derivative of  $\phi = axy^2 + byz + cz^2x^2$  at P (1, 2, -1) has maximum magnitude 64 in the direction parallel to z-axis.

https://www.btubikaner.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने प्राने पेपर्स क्षेजे और 10 रुपये पायें,

Paytm or Google Pay ��



Time: 3 Hours

Maximum Marks: 70 Min. Passing Marks:

## Instructions to Candidates:

Part – A: Short answer questions (up to 25 words) 10 \* 2 marks = 20 marks. All 10 questions are compulsory.

Part – B: Analytical/Problem Solving questions 5 \* 4 marks = 20 marks. Candidates have to answer 5 questions out of 7.

Part – C: Descriptive/Analytical/Problem Solving/ Design questions 3 \* 10 marks = 30 marks. Candidates have to answer 3 questions out of 5.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting materials is permitted during examination. (Mentioned in form No. 205)

| 1    | 2                                                                                    |
|------|--------------------------------------------------------------------------------------|
|      | PART-A                                                                               |
| 94.  | Differentiate between point function and path function.                              |
| 22.  | Enlist the similarities between heat and work.                                       |
| Q.3. | Define compression Ratio.                                                            |
| Q.4. | Draw P-V and T-S diagram for Carnot Cycle.                                           |
| Q.5. | Draw a block diagram for the Brayton cycle and mention the function of each element. |
| Q.6. | Write industrial applications of the Rolling process.                                |
| Q.7. | How many atoms and molecules are there in 1 gram of Hydrogen.                        |
| 0.8. | Classification of IC engines.                                                        |
| 09   | Why is idler gear used in gear trains?                                               |
|      |                                                                                      |

P.T.O.

Q.10. Determine torque transmitted on the pinion shaft if torque transmitted on the gear shaft is 20Nm. Consider Gear ratio = 4.

#### PART-B

- Q.1 A certain amount of an ideal gas initially at a pressure  $P_1$  and temperature  $T_1$ . First, it undergoes a constant pressure process 1-2 such that  $T_2=3T_1/4$ . Then, it undergoes a constant volume process 2-3 such that  $T_3=T_1/2$ . The ratio of the final volume to the initial volume of the ideal gas is.
- Q2. Difference between Reversible and Irreversible processes.
- Q.3. Write a short note on Brayton Cycle.
- Q.4. What is the difference between Otto, Diesel, and Dual cycle?
- Q.S. Write a short note on the Classification of Materials.
- Q.6. Classification of Gear Drives.
- Q7. Write the difference between welding, brazing, and soldering.

#### PART- C

- Write Kelvin-Plank and Clausius statements of the second law of thermodynamics with schematic diagrams. https://www.btubikaner.com
  - b) A cyclic heat engine operates between a source temperature of 1073 K and a sink temperature of 303 K. What is the least rate of heat rejection per kW net output of the engine?
  - Q.2. Draw P-V and T-S Diagram for Diesel cycle and derive expression of the efficiency of Diesel cycle.
  - Q.3. Write short notes on different types of Extrusion with a schematic diagram for each.
  - QA. Prove that the ratio of belt tension is given by the T1/T2 =  $e^{\mu\theta}$
  - Q.5. Draw P-V and T-S diagrams for the Ranking cycle and derive the expression of the efficiency of the Ranking cycle.

\*\*\*\*\*\*\*\*\*



Roll No.

## 21N508/

Total No. of Pages.: 02

B.Tech. II Sem (New Scheme) Main Exam Acad Session 2022-23

### All Branch

(2FY2-08) - Computer Fundmentals & Programming

Time: 3 Hours

Maximum Marks: 70 Min. Passing Marks:

## **Instructions to Candidates:**

Part – A: Short answer questions (up to 25 words) 10 \* 2 marks = 20 marks. All 10 questions are compulsory.

Part – B: Analytical/Problem Solving questions 5 \* 4 marks = 20 marks. Candidates have to answer 5 questions out of 7.

Part – C: Descriptive/Analytical/Problem Solving/ Design questions 3 \* 10 marks = 30 marks. Candidates have to answer 3 questions out of 5.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting materials is permitted during examination. (Mentioned in form No. 205)

| 1N           | IA                                                              | 2 NA   |  |
|--------------|-----------------------------------------------------------------|--------|--|
|              | PART-A                                                          |        |  |
| ∕Q.1.        | What are the low-level languages?                               | [2]    |  |
| Q.2.         | What do you mean by a base or radix of a number system?         | [2]    |  |
| Q.3.         | What do you mean by nested for loop in C?                       | [2]    |  |
| .∕Q.4.       | Differentiate between Relational and logical operators.         | [2]    |  |
| Q.5.         | How does function definition differs from function declaration? | [2]    |  |
| Q.6.         | Give different ways of initialization of arrays in C language.  | [2]    |  |
| ► Q.7.       | Justify the statement-"Name of array can be used as a pointer". | [2]    |  |
| Q.8.         | How do you access the members of a structure?                   | [2]    |  |
| <b>Q</b> .9. | Differentiate between static and dynamic memory allocation?     | [2]    |  |
| Q.10.        | Describe the function fclose() and fopen ().                    | [2]    |  |
| 7            |                                                                 | P.T.O. |  |

**Z-352** 

### PART-B

|        | I AN -                                                                     |                       |
|--------|----------------------------------------------------------------------------|-----------------------|
| √ Q.1  | Convert the following numbers:                                             | [4]                   |
|        | (a) $(6498)_{10} = (?)_2 = (?)_{16}$                                       |                       |
|        | (b) $(4BD5)_{16} = (?)_2 = (?)_{10}$                                       |                       |
| ∕Q.2.  | Write a program in C to generate fibonacci series.                         | [4]                   |
| Q.3.   | List and explain with syntax the most common in build string handling f    | function used in C.   |
|        |                                                                            | [4]                   |
| Q.4.   | What do you mean by function prototyping? Write down the advantages        | of function           |
|        | prototyping in C.                                                          | [4]                   |
| Q.5.   | What are the storage classes? Give the classification of various storage   | classes               |
|        | used in C.                                                                 | [4]                   |
| Q.6.   | Write a program to swap two numbers using call by reference method a       | nd display the        |
|        | numbers before, during and after the function calling.                     | [4]                   |
| Q.7.   | What are the different modes in which a file can be opened in C? Explain   | in with suitable      |
|        | example.                                                                   | [4]                   |
|        |                                                                            |                       |
|        | PART- C                                                                    | _                     |
| Q.1.   | How many types of storage are normally there in the storage unit of a co   | omputer system?       |
|        | Give examples of each type and justify the need for each storage unit.     | [10]                  |
| Q.2.   | Differentiate between structure and union. When is union preferred over    | structure? Define     |
|        | a structure distance having two data members: cm and mm in integer. The    | ne program enters     |
|        | three variables and find which distance is the largest among them.         | [10]                  |
| ∕ Q.3. | What is an array? Give two classification of arrays. Write a program to f  | and greatest number   |
|        | in an array.                                                               | [10]                  |
| Q.4.   | List and explain various types of loops available in C with their syntax a | nd suitable examples. |
|        | Write a program to find the table of a number using loop.                  | [10]                  |
| Q.5.   | What is a string? How to declare and initialize a string? Write a program  | to copy one string to |
|        | another string without using the standard library function strcpy ().      | [10]                  |

\*\*\*\*\*\*\*\*

Z-352